Ronco, Riccardo;
Perini, Cecilia;
Currò, Riccardo;
Dominik, Natalia;
Facchini, Stefano;
Gennari, Alice;
Simone, Roberto;
... Cortese, Andrea; + view all
(2023)
Truncating Variants in RFC1 in Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia Syndrome.
Neurology
, 100
(5)
e543-e554.
10.1212/WNL.0000000000201486.
Preview |
Text
e543.full.pdf Download (760kB) | Preview |
Abstract
INTRODUCTION: Cerebellar Ataxia, Neuropathy and Vestibular Areflexia Syndrome (CANVAS) is an autosomal recessive neurodegenerative disease characterized by adult onset and slowly progressive sensory neuropathy, cerebellar dysfunction, and vestibular impairment. In most cases, the disease is caused by biallelic (AAGGG)n repeat expansions in the second intron of the Replication Factor Complex subunit 1 (RFC1). However, a small number of cases with typical CANVAS do not carry the common biallelic repeat expansion. The objective of this study was to expands the genotypic spectrum of CANVAS by identifying point mutations in RFC1 coding region associated with this condition. METHODS: Fifteen individuals diagnosed with CANVAS and carrying only one heterozygous (AAGGG)n expansion in RFC1 underwent WGS or WES to test for the presence of a second variant in RFC1 or other unrelated gene. To assess the impact of truncating variants on RFC1 expression we tested the level of RFC1 transcript and protein on patients' derived cell lines. RESULTS: We identified seven patients from five unrelated families with clinically defined CANVAS carrying a heterozygous (AAGGG)n expansion together with a second truncating variant in trans in RFC1, which included: c.1267C>T (p.Arg423Ter), c.1739_1740del (p.Lys580SerfsTer9), c.2191del (p.Gly731GlufsTer6) and c.2876del (p.Pro959GlnfsTer24). Patient fibroblasts containing the c.1267C>T (p.Arg423Ter) or c.2876del (p.Pro959GlnfsTer24) variants demonstrated nonsense-mediated mRNA decay and reduced RFC1 transcript and protein. DISCUSSION: Our report expands the genotype spectrum of RFC1 disease. Full RFC1 sequencing is recommended in cases affected by typical CANVAS and carrying monoallelic (AAGGG)n expansions. Also, it sheds further light on the pathogenesis of RFC1 CANVAS as it supports the existence of a loss of function mechanism underlying this complex neurodegenerative condition.
Type: | Article |
---|---|
Title: | Truncating Variants in RFC1 in Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia Syndrome |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1212/WNL.0000000000201486 |
Publisher version: | https://doi.org/10.1212/WNL.0000000000201486 |
Language: | English |
Additional information: | © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). |
UCL classification: | UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Department of Neuromuscular Diseases UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10158601 |
Archive Staff Only
View Item |