Martins, M;
Soares, BP;
Santos, JHPM;
Bharmoria, P;
Torres Acosta, MA;
Dias, ACRV;
Coutinho, JAP;
(2021)
Sustainable Strategy Based on Induced Precipitation for the Purification of Phycobiliproteins.
ACS Sustainable Chemistry and Engineering
, 9
(10)
pp. 3942-3954.
10.1021/acssuschemeng.0c09218.
Preview |
Text
ArtigoPrecipitacaoFico_forUCL.pdf - Other Download (972kB) | Preview |
Abstract
Phycobiliproteins are fluorescent proteins mainly produced by red macroalgae and cyanobacteria. These proteins, essential to the survival of these organisms, find application in many fields of interest, from medical, pharmaceutical, and cosmetic to food and textile industries. The biggest obstacle to their use is the lack of simple environmental and economical sustainable methodologies to obtain these proteins with high purity. In this work, a new purification process is proposed based on the induced precipitation of the target proteins followed by ultrafiltration. Purities of 89.5% of both phycobiliproteins and 87.3% of R-phycoerythrin were achieved using ammonium sulfate and poly(acrylic acid) sodium salts as precipitation agents (followed by an ultrafiltration step), while maintaining high recovery yields and protein structure stability. Environmental analysis performed to evaluate the proposed process shows that the carbon footprint for the proposed process is much lower than that reported for alternative methodology, and the economic analysis reveals the cost-effective character associated to its high performance. This work is a step toward more sustainable and effective methodologies/processes with high industrial potential.
Type: | Article |
---|---|
Title: | Sustainable Strategy Based on Induced Precipitation for the Purification of Phycobiliproteins |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1021/acssuschemeng.0c09218 |
Publisher version: | https://doi.org/10.1021/acssuschemeng.0c09218 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Science & Technology, Physical Sciences, Technology, Chemistry, Multidisciplinary, Green & Sustainable Science & Technology, Engineering, Chemical, Chemistry, Science & Technology - Other Topics, Engineering, Gracilaria gracilis, induced precipitation, purification, phycobiliproteins, R-phycoerythrin, PROTEIN R-PHYCOERYTHRIN, POLYETHYLENE-GLYCOL, B-PHYCOERYTHRIN, EXTRACTION, BIOREFINERY |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering UCL > Provost and Vice Provost Offices > UCL BEAMS UCL |
URI: | https://discovery.ucl.ac.uk/id/eprint/10158467 |
Archive Staff Only
![]() |
View Item |