Manka, Szymon W;
Wenborn, Adam;
Collinge, John;
Wadsworth, Jonathan DF;
(2022)
Prion strains viewed through the lens of cryo-EM.
Cell and Tissue Research
10.1007/s00441-022-03676-z.
(In press).
Preview |
Text
s00441-022-03676-z.pdf - Published Version Download (3MB) | Preview |
Abstract
Mammalian prions are lethal transmissible pathogens that cause fatal neurodegenerative diseases in humans and animals. They consist of fibrils of misfolded, host-encoded prion protein (PrP) which propagate through templated protein polymerisation. Prion strains produce distinct clinicopathological phenotypes in the same host and appear to be encoded by distinct misfolded PrP conformations and assembly states. Despite fundamental advances in our understanding of prion biology, key knowledge gaps remain. These include precise delineation of prion replication mechanisms, detailed explanation of the molecular basis of prion strains and inter-species transmission barriers, and the structural definition of neurotoxic PrP species. Central to addressing these questions is the determination of prion structure. While high-resolution definition of ex vivo prion fibrils once seemed unlikely, recent advances in cryo-electron microscopy (cryo-EM) and computational methods for 3D reconstruction of amyloids have now made this possible. Recently, near-atomic resolution structures of highly infectious, ex vivo prion fibrils from hamster 263K and mouse RML prion strains were reported. The fibrils have a comparable parallel in-register intermolecular β-sheet (PIRIBS) architecture that now provides a structural foundation for understanding prion strain diversity in mammals. Here, we review these new findings and discuss directions for future research.
Type: | Article |
---|---|
Title: | Prion strains viewed through the lens of cryo-EM |
Location: | Germany |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/s00441-022-03676-z |
Publisher version: | https://doi.org/10.1007/s00441-022-03676-z |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Cryo-EM, Prion, Prion disease, Prion strains, Prion structure |
UCL classification: | UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Institute of Prion Diseases > MRC Prion Unit at UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Institute of Prion Diseases |
URI: | https://discovery.ucl.ac.uk/id/eprint/10154872 |
Archive Staff Only
View Item |