UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

A Data-driven Latent Semantic Analysis for Automatic Text Summarization using LDA Topic Modelling

Onah, Daniel FO; Pang, Elaine LL; El-Haj, Mahmoud; (2022) A Data-driven Latent Semantic Analysis for Automatic Text Summarization using LDA Topic Modelling. ArXiv Green open access

[thumbnail of preprint_manuscript.pdf]
Preview
Text
preprint_manuscript.pdf - Submitted Version

Download (2MB) | Preview

Abstract

With the advent and popularity of big data mining and huge text analysis in modern times, automated text summarization became prominent for extracting and retrieving important information from documents. This research investigates aspects of automatic text summarization from the perspectives of single and multiple documents. Summarization is a task of condensing huge text articles into short, summarized versions. The text is reduced in size for summarization purpose but preserving key vital information and retaining the meaning of the original document. This study presents the Latent Dirichlet Allocation (LDA) approach used to perform topic modelling from summarised medical science journal articles with topics related to genes and diseases. In this study, PyLDAvis web-based interactive visualization tool was used to visualise the selected topics. The visualisation provides an overarching view of the main topics while allowing and attributing deep meaning to the prevalence individual topic. This study presents a novel approach to summarization of single and multiple documents. The results suggest the terms ranked purely by considering their probability of the topic prevalence within the processed document using extractive summarization technique. PyLDAvis visualization describes the flexibility of exploring the terms of the topics' association to the fitted LDA model. The topic modelling result shows prevalence within topics 1 and 2. This association reveals that there is similarity between the terms in topic 1 and 2 in this study. The efficacy of the LDA and the extractive summarization methods were measured using Latent Semantic Analysis (LSA) and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics to evaluate the reliability and validity of the model.

Type: Working / discussion paper
Title: A Data-driven Latent Semantic Analysis for Automatic Text Summarization using LDA Topic Modelling
Open access status: An open access version is available from UCL Discovery
DOI: 10.48550/arXiv.2207.14687
Publisher version: https://doi.org/10.48550/arXiv.2207.14687
Language: English
Additional information: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords: cs.IR, cs.IR, cs.LG
UCL classification: UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of Arts and Humanities
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of Arts and Humanities > Dept of Information Studies
UCL > Provost and Vice Provost Offices > UCL SLASH
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10154663
Downloads since deposit
57Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item