UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Methods for Photoacoustic Image Reconstruction Exploiting Properties of Curvelet Frame

Pan, Bolin; (2022) Methods for Photoacoustic Image Reconstruction Exploiting Properties of Curvelet Frame. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Thesis_BP_Final_11082022.pdf]
Preview
Text
Thesis_BP_Final_11082022.pdf - Published Version

Download (10MB) | Preview

Abstract

Curvelet frame is of special significance for photoacoustic tomography (PAT) due to its sparsifying and microlocalisation properties. In this PhD project, we explore the methods for image reconstruction in PAT with flat sensor geometry using Curvelet properties. This thesis makes five distinct contributions: (i) We investigate formulation of the forward, adjoint and inverse operators for PAT in Fourier domain. We derive a one-to-one map between wavefront directions in image and data spaces in PAT. Combining the Fourier operators with the wavefront map allows us to create the appropriate PAT operators for solving limited-view problems due to limited angular sensor sensitivity. (ii) We devise a concept of wedge restricted Curvelet transform, a modification of standard Curvelet transform, which allows us to formulate a tight frame of wedge restricted Curvelets on the range of the PAT forward operator for PAT data representation. We consider details specific to PAT data such as symmetries, time oversampling and their consequences. We further adapt the wedge restricted Curvelet to decompose the wavefronts into visible and invisible parts in the data domain as well as in the image domain. (iii) We formulate a two step approach based on the recovery of the complete volume of the photoacoustic data from the sub-sampled data followed by the acoustic inversion, and a one step approach where the photoacoustic image is directly recovered from the subsampled data. The wedge restricted Curvelet is used as the sparse representation of the photoacoustic data in the two step approach. (iv) We discuss a joint variational approach that incorporates Curvelet sparsity in photoacoustic image domain and spatio-temporal regularization via optical flow constraint to achieve improved results for dynamic PAT reconstruction. (v) We consider the limited-view problem due to limited angular sensitivity of the sensor (see (i) for the formulation of the corresponding fast operators in Fourier domain). We propose complementary information learning approach based on splitting the problem into visible and invisible singularities. We perform a sparse reconstruction of the visible Curvelet coefficients using compressed sensing techniques and propose a tailored deep neural network architecture to recover the invisible coefficients.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Methods for Photoacoustic Image Reconstruction Exploiting Properties of Curvelet Frame
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2022. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10153674
Downloads since deposit
124Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item