UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Relationship Between Replay-Associated Ripples and Hippocampal N-Methyl-D-Aspartate Receptors: Preliminary Evidence From a PET-MEG Study in Schizophrenia

Nour, Matthew M; Beck, Katherine; Liu, Yunzhe; Arumuham, Atheeshaan; Veronese, Mattia; Howes, Oliver D; Dolan, Raymond J; (2022) Relationship Between Replay-Associated Ripples and Hippocampal N-Methyl-D-Aspartate Receptors: Preliminary Evidence From a PET-MEG Study in Schizophrenia. Schizophrenia Bulletin Open , 3 (1) , Article sgac044. 10.1093/schizbullopen/sgac044. Green open access

[thumbnail of sgac044.pdf]
Preview
Text
sgac044.pdf - Published Version

Download (994kB) | Preview

Abstract

Background and Hypotheses: Hippocampal replay and associated high-frequency ripple oscillations are among the best-characterized phenomena in resting brain activity. Replay/ripples support memory consolidation and relational inference, and are regulated by N-methyl-D-aspartate receptors (NMDARs). Schizophrenia has been associated with both replay/ripple abnormalities and NMDAR hypofunction in both clinical samples and genetic mouse models, although the relationship between these 2 facets of hippocampal function has not been tested in humans. Study Design: Here, we avail of a unique multimodal human neuroimaging data set to investigate the relationship between the availability of (intrachannel) NMDAR binding sites in hippocampus, and replay-associated ripple power, in 16 participants (7 nonclinical participants and 9 people with a diagnosis of schizophrenia, PScz). Each participant had both a [18F]GE-179 positron emission tomography (PET) scan (to measure NMDAR availability, V T ) and a magnetoencephalography (MEG) scan (to measure offline neural replay and associated high-frequency ripple oscillations, using Temporally Delayed Linear Modeling). Study Results: We show a positive relationship between hippocampal NMDAR availability and replay-associated ripple power. This linkage was evident across control participants (r(5) = .94, P = .002) and PScz (r(7) = .70, P = .04), with no group difference. Conclusions: Our findings provide preliminary evidence for a relationship between hippocampal NMDAR availability and replay-associated ripple power in humans, and haverelevance for NMDAR hypofunction theories of schizophrenia.

Type: Article
Title: Relationship Between Replay-Associated Ripples and Hippocampal N-Methyl-D-Aspartate Receptors: Preliminary Evidence From a PET-MEG Study in Schizophrenia
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/schizbullopen/sgac044
Publisher version: https://doi.org/10.1093/schizbullopen/sgac044
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Keywords: Psychosis, excitation-inhibition balance, inference, replay, sharp wave ripple
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
URI: https://discovery.ucl.ac.uk/id/eprint/10153613
Downloads since deposit
34Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item