Chen, Zhenpeng;
Zhang, Jie M;
Sarro, Federica;
Harman, Mark;
(2022)
MAAT: A Novel Ensemble Approach to Addressing Fairness and Performance Bugs for Machine Learning Software.
In:
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE '22).
ACM Press: Singapore, Singapore.
(In press).
Preview |
Text
FSE22_Fairness.pdf - Accepted Version Download (2MB) | Preview |
Abstract
Machine Learning (ML) software can lead to unfair and unethical decisions, making software fairness bugs an increasingly significant concern for software engineers. However, addressing fairness bugs often comes at the cost of introducing more ML performance (e.g., accuracy) bugs. In this paper, we propose MAAT, a novel ensemble approach to improving fairness-performance trade-off for ML software. Conventional ensemble methods combine different models with identical learning objectives. MAAT, instead, combines models optimized for different objectives: fairness and ML performance. We conduct an extensive evaluation of MAAT with 5 state-of-the-art methods, 9 software decision tasks, and 15 fairness-performance measurements. The results show that MAAT significantly outperforms the state-of-the-art. In particular, MAAT beats the trade-off baseline constructed by a recent benchmarking tool in 92.2% of the overall cases evaluated, 12.2 percentage points more than the best technique currently available. Moreover, the superiority of MAAT over the state-of-the-art holds on all the tasks and measurements that we study. We have made publicly available the code and data of this work to allow for future replication and extension.
Type: | Proceedings paper |
---|---|
Title: | MAAT: A Novel Ensemble Approach to Addressing Fairness and Performance Bugs for Machine Learning Software |
Event: | The 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE '22) |
Location: | Singapore |
Dates: | 14 Nov 2022 - 18 Nov 2022 |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1145/3540250.3549093 |
Publisher version: | https://2022.esec-fse.org/ |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Software fairness, Bias mitigation, Fairness-performance trade-off, Ensemble learning, Machine learning software |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science UCL > Provost and Vice Provost Offices > UCL BEAMS UCL |
URI: | https://discovery.ucl.ac.uk/id/eprint/10152903 |




Archive Staff Only
![]() |
View Item |