Svedberg, Marcus;
Imberg, Henrik;
Gustafsson, Per Magnus;
Tiddens, Harm;
Davies, Gwyneth;
Lindblad, Anders;
(2022)
Longitudinal lung clearance index and association with structural lung damage in children with cystic fibrosis.
Thorax
10.1136/thoraxjnl-2021-218178.
(In press).
Preview |
Text
Davies_Manuscript LCI and CT_CF_Thorax2022_Svedberg_et_aletal.pdf Download (858kB) | Preview |
Preview |
Text
Davies_Supplementary material to the article LCI and CT_CF_Thorax2022_Svedberg_et_al.pdf Download (1MB) | Preview |
Abstract
Children with cystic fibrosis (CF) now often go through childhood with only subtle upper and lower airway-related symptoms and have well-preserved lung function assessed by spirometry.1 Despite this improvement, irreversible structural lung damages (SLD) start early in life and progress even in the absence of symptoms.2 3 An important clinical challenge in CF care is to predict the extent and foresee the progression of CF lung disease. This issue is most appropriately addressed by longitudinal studies with repeated measurements of relevant outcomes, which reflect the situation encountered in clinical practice. Multiple breath washout (MBW) has been shown to be a sensitive, non-invasive, feasible method in all ages for repeated measurements over time to track early CF lung disease.4 5 The lung clearance index (LCI) is the most commonly used outcome from MBW examinations and reflects the global ventilation inhomogeneity.4 Several studies have demonstrated that LCI responds to interventions and it is suggested that MBW may be a useful complementary tool in routine clinical care to detect and evaluate treatment responses.6 7 Chest CT has also been shown to be a sensitive marker to of early SLD in CF children, but with the disadvantage of accumulation of ionising radiation, which limits a more frequent utilisation.8 Several studies, most of them cross-sectional, have compared the sensitivity for both methods suggesting relatively similar sensitivity to detect early CF lung disease.9–12 Even though chest CT and MBW are considered complementary markers of the CF lung disease, longitudinal studies are needed to understand the potential use of LCI as a predictor of the extent and the progression of SLD. The aims of this study were to: (A) describe the longitudinal progression of LCI in a Swedish cohort with CF between the ages 0 and 17 years, (B) investigate the association between the magnitude and progression of longitudinal LCI measurements with the levels and progression rates of SLD measured with chest CT, (C) evaluate if longitudinal LCI measurement in preschool and school-age children can predict SLD magnitude assessed by chest CT at school age. The LCI trend and the association between chest CT and longitudinal LCI measurements have partly been reported in the form of an abstract.13
Archive Staff Only
View Item |