Deuis, Jennifer R;
Ragnarsson, Lotten;
Robinson, Samuel D;
Dekan, Zoltan;
Chan, Lerena;
Jin, Ai-Hua;
Tran, Poanna;
... Vetter, Irina; + view all
(2022)
The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation.
Frontiers in Pharmacology
, 12
, Article 789570. 10.3389/fphar.2021.789570.
Preview |
PDF
Wood_The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4_VoR.pdf - Published Version Download (2MB) | Preview |
Abstract
Venoms from cone snails and arachnids are a rich source of peptide modulators of voltage-gated sodium (NaV) channels, however relatively few venom-derived peptides with activity at the mammalian NaV1.8 subtype have been isolated. Here, we describe the discovery and functional characterisation of β-theraphotoxin-Eo1a, a peptide from the venom of the Tanzanian black and olive baboon tarantula Encyocratella olivacea that modulates NaV1.8. Eo1a is a 37-residue peptide that increases NaV1.8 peak current (EC50 894 ± 146 nM) and causes a large hyperpolarising shift in both the voltage-dependence of activation (ΔV50-20.5 ± 1.2 mV) and steady-state fast inactivation (ΔV50-15.5 ± 1.8 mV). At a concentration of 10 μM, Eo1a has varying effects on the peak current and channel gating of NaV1.1-NaV1.7, although its activity is most pronounced at NaV1.8. Investigations into the binding site of Eo1a using NaV1.7/NaV1.8 chimeras revealed a critical contribution of the DII S3-S4 extracellular loop of NaV1.8 to toxin activity. Results from this work may form the basis for future studies that lead to the rational design of spider venom-derived peptides with improved potency and selectivity at NaV1.8.
Type: | Article |
---|---|
Title: | The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation |
Location: | Switzerland |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3389/fphar.2021.789570 |
Publisher version: | https://doi.org/10.3389/fphar.2021.789570 |
Language: | English |
Additional information: | Copyright © 2022 Deuis, Ragnarsson, Robinson, Dekan, Chan, Jin, Tran, McMahon, Li, Wood, Cox, King, Herzig and Vetter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms |
Keywords: | Science & Technology, Life Sciences & Biomedicine, Pharmacology & Pharmacy, voltage-gated sodium channel, Nav1, 8, pain, peptide, spider, TOXINS, TARGET, NOMENCLATURE, BLOCKER, POTENT, GENE, PAIN |
UCL classification: | UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Wolfson Inst for Biomedical Research UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine |
URI: | https://discovery.ucl.ac.uk/id/eprint/10145605 |
Archive Staff Only
View Item |