UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score

Huynh-Le, Minh-Phuong; Karunamuni, Roshan; Fan, Chun Chieh; Asona, Lui; Thompson, Wesley K; Martinez, Maria Elena; Eeles, Rosalind A; ... Seibert, Tyler M; + view all (2022) Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases 10.1038/s41391-022-00497-7. (In press). Green open access

[thumbnail of Pashayan_s41391-022-00497-7.pdf]
Preview
Text
Pashayan_s41391-022-00497-7.pdf

Download (2MB) | Preview

Abstract

BACKGROUND: Prostate cancer risk stratification using single-nucleotide polymorphisms (SNPs) demonstrates considerable promise in men of European, Asian, and African genetic ancestries, but there is still need for increased accuracy. We evaluated whether including additional SNPs in a prostate cancer polygenic hazard score (PHS) would improve associations with clinically significant prostate cancer in multi-ancestry datasets. METHODS: In total, 299 SNPs previously associated with prostate cancer were evaluated for inclusion in a new PHS, using a LASSO-regularized Cox proportional hazards model in a training dataset of 72,181 men from the PRACTICAL Consortium. The PHS model was evaluated in four testing datasets: African ancestry, Asian ancestry, and two of European Ancestry-the Cohort of Swedish Men (COSM) and the ProtecT study. Hazard ratios (HRs) were estimated to compare men with high versus low PHS for association with clinically significant, with any, and with fatal prostate cancer. The impact of genetic risk stratification on the positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was also measured. RESULTS: The final model (PHS290) had 290 SNPs with non-zero coefficients. Comparing, for example, the highest and lowest quintiles of PHS290, the hazard ratios (HRs) for clinically significant prostate cancer were 13.73 [95% CI: 12.43-15.16] in ProtecT, 7.07 [6.58-7.60] in African ancestry, 10.31 [9.58-11.11] in Asian ancestry, and 11.18 [10.34-12.09] in COSM. Similar results were seen for association with any and fatal prostate cancer. Without PHS stratification, the PPV of PSA testing for clinically significant prostate cancer in ProtecT was 0.12 (0.11-0.14). For the top 20% and top 5% of PHS290, the PPV of PSA testing was 0.19 (0.15-0.22) and 0.26 (0.19-0.33), respectively. CONCLUSIONS: We demonstrate better genetic risk stratification for clinically significant prostate cancer than prior versions of PHS in multi-ancestry datasets. This is promising for implementing precision-medicine approaches to prostate cancer screening decisions in diverse populations.

Type: Article
Title: Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41391-022-00497-7
Publisher version: https://doi.org/10.1038/s41391-022-00497-7
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Keywords: UKGPCS collaborators, APCB (Australian Prostate Cancer BioResource), NC-LA PCaP Investigators, IMPACT Study Steering Committee and Collaborators, Canary PASS Investigators, Profile Study Steering Committee, PRACTICAL Consortium
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health > Applied Health Research
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10144347
Downloads since deposit
22Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item