Kożdoń, Katarzyna Weronika;
(2022)
Bio-mimetic Spiking Neural Networks for unsupervised clustering of spatio-temporal data.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Kozdon_Katarzyna.pdf - Accepted Version Download (9MB) | Preview |
Abstract
Spiking neural networks aspire to mimic the brain more closely than traditional artificial neural networks. They are characterised by a spike-like activation function inspired by the shape of an action potential in biological neurons. Spiking networks remain a niche area of research, perform worse than the traditional artificial networks, and their real-world applications are limited. We hypothesised that neuroscience-inspired spiking neural networks with spike-timing-dependent plasticity demonstrate useful learning capabilities. Our objective was to identify features which play a vital role in information processing in the brain but are not commonly used in artificial networks, implement them in spiking networks without copying constraints that apply to living organisms, and to characterise their effect on data processing. The networks we created are not brain models; our approach can be labelled as artificial life. We performed a literature review and selected features such as local weight updates, neuronal sub-types, modularity, homeostasis and structural plasticity. We used the review as a guide for developing the consecutive iterations of the network, and eventually a whole evolutionary developmental system. We analysed the model’s performance on clustering of spatio-temporal data. Our results show that combining evolution and unsupervised learning leads to a faster convergence on the optimal solutions, better stability of fit solutions than each approach separately. The choice of fitness definition affects the network’s performance on fitness-related and unrelated tasks. We found that neuron type-specific weight homeostasis can be used to stabilise the networks, thus enabling longer training. We also demonstrated that networks with a rudimentary architecture can evolve developmental rules which improve their fitness. This interdisciplinary work provides contributions to three fields: it proposes novel artificial intelligence approaches, tests the possible role of the selected biological phenomena in information processing in the brain, and explores the evolution of learning in an artificial life system.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Bio-mimetic Spiking Neural Networks for unsupervised clustering of spatio-temporal data |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10142370 |
Archive Staff Only
View Item |