Leodori, G;
De Bartolo, MI;
Guerra, A;
Fabbrini, A;
Rocchi, L;
Latorre, A;
Paparella, G;
... Berardelli, A; + view all
(2022)
Motor Cortical Network Excitability in Parkinson's Disease.
Movement Disorders
10.1002/mds.28914.
(In press).
Text
Latorre_Motor cortical network excitability in Parkinson’s disease.pdf - Accepted Version Access restricted to UCL open access staff Download (193kB) |
Abstract
Background: Motor impairment in Parkinson's disease (PD) reflects changes in the basal ganglia-thalamocortical circuit converging on the primary motor cortex (M1) and supplementary motor area (SMA). Previous studies assessed M1 excitability in PD using transcranial magnetic stimulation (TMS)-evoked electromyographic activity. TMS-evoked electroencephalographic activity may unveil broader motor cortical network changes in PD. Objective: The aim was to assess motor cortical network excitability in PD. Methods: We compared TMS-evoked cortical potentials (TEPs) from M1 and the pre-SMA between 20 PD patients tested off and on medication and 19 healthy controls (HCs) and investigated possible correlations with bradykinesia. Results: Off PD patients compared to HCs had smaller P30 responses from the M1s contralateral (M1+) and ipsilateral (M1–) to the most bradykinetic side and increased pre-SMA N40. Dopaminergic therapy normalized the amplitude of M1+ and M1– P30 as well as pre-SMA N40. We found a positive correlation between M1+ P30 amplitude and bradykinesia in off PD patients. Conclusions: Changes in M1 P30 and pre-SMA N40 in PD suggest that M1 excitability is reduced on both sides, whereas pre-SMA excitability is increased. The effect of dopaminergic therapy and the clinical correlation suggest that these cortical changes may reflect abnormal basal ganglia-thalamocortical activity. TMS electroencephalography provides novel insight into motor cortical network changes related to the pathophysiology of PD.
Archive Staff Only
View Item |