UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Translation of quantitative MRI analysis tools for clinical neuroradiology application

Goodkin, Olivia; (2022) Translation of quantitative MRI analysis tools for clinical neuroradiology application. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Olivia-Goodkin-PhD-Thesis-final.pdf]
Preview
Text
Olivia-Goodkin-PhD-Thesis-final.pdf - Accepted Version

Download (4MB) | Preview

Abstract

Quantification of imaging features can assist radiologists by reducing subjectivity, aiding detection of subtle pathology, and increasing reporting consistency. Translation of quantitative image analysis techniques to clinical use is currently uncommon and challenging. This thesis explores translation of quantitative imaging support tools for clinical neuroradiology use. I have proposed a translational framework for development of quantitative imaging tools, using dementia as an exemplar application. This framework emphasises the importance of clinical validation, which is not currently prioritised. Aspects of the framework were then applied to four disease areas: hippocampal sclerosis (HS) as a cause of epilepsy; dementia; multiple sclerosis (MS) and gliomas. A clinical validation study for an HS quantitative report showed that when image interpreters used the report, they were more accurate and confident in their assessments, particularly for challenging bilateral cases. A similar clinical validation study for a dementia reporting tool found improved sensitivity for all image interpreters and increased assessment accuracy for consultant radiologists. These studies indicated benefits from quantitative reports that contextualise a patient’s results with appropriate normative reference data. For MS, I addressed a technical translational challenge by applying lesion and brain quantification tools to standard clinical image acquisitions which do not include a conventional T1-weighted sequence. Results were consistent with those from conventional sequence inputs and therefore I pursued this concept to establish a clinically applicable normative reference dataset for development of a quantitative reporting tool for clinical use. I focused on current radiology reporting of gliomas to establish which features are commonly missed and may be important for clinical management decisions. This informs both the potential utility of a quantitative report for gliomas and its design and content. I have identified numerous translational challenges for quantitative reporting and explored aspects of how to address these for several applications across clinical neuroradiology.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Translation of quantitative MRI analysis tools for clinical neuroradiology application
Event: UCL
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2022. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10141592
Downloads since deposit
Loading...
207Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item