Piras, Davide;
(2022)
Accelerating inference in cosmology and seismology with generative models.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
thesis_piras_davide.pdf - Accepted Version Download (19MB) | Preview |
Abstract
Statistical analyses in many physical sciences require running simulations of the system that is being examined. Such simulations provide complementary information to the theoretical analytic models, and represent an invaluable tool to investigate the dynamics of complex systems. However, running simulations is often computationally expensive, and the high number of required mocks to obtain sufficient statistical precision often makes the problem intractable. In recent years, machine learning has emerged as a possible solution to speed up the generation of scientific simulations. Machine learning generative models usually rely on iteratively feeding some true simulations to the algorithm, until it learns the important common features and is capable of producing accurate simulations in a fraction of the time. In this thesis, advanced machine learning algorithms are explored and applied to the challenge of accelerating physical simulations. Various techniques are applied to problems in cosmology and seismology, showing benefits and limitations of such an approach through a critical analysis. The algorithms are applied to compelling problems in the fields, including surrogate models for the seismic wave equation, the emulation of cosmological summary statistics, and the fast generation of large simulations of the Universe. These problems are formulated within a relevant statistical framework, and tied to real data analysis pipelines. In the conclusions, a critical overview of the results is provided, together with an outlook over possible future expansions of the work presented in the thesis.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Accelerating inference in cosmology and seismology with generative models |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2022. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/10141578 |
Archive Staff Only
View Item |