UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Bayesian Variational Regularisation for Dark Matter Reconstruction with Uncertainty Quantification

Price, Matthew Alexander; (2021) Bayesian Variational Regularisation for Dark Matter Reconstruction with Uncertainty Quantification. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Main.pdf]
Preview
Text
Main.pdf - Accepted Version

Download (26MB) | Preview

Abstract

Despite the great wealth of cosmological knowledge accumulated since the early 20th century, the nature of dark-matter, which accounts for ~85% of the matter content of the universe, remains illusive. Unfortunately, though dark-matter is scientifically interesting, with implications for our fundamental understanding of the Universe, it cannot be directly observed. Instead, dark-matter may be inferred from e.g. the optical distortion (lensing) of distant galaxies which, at linear order, manifests as a perturbation to the apparent magnitude (convergence) and ellipticity (shearing). Ensemble observations of the shear are collected and leveraged to construct estimates of the convergence, which can directly be related to the universal dark-matter distribution. Imminent stage IV surveys are forecast to accrue an unprecedented quantity of cosmological information; a discriminative partition of which is accessible through the convergence, and is disproportionately concentrated at high angular resolutions, where the echoes of cosmological evolution under gravity are most apparent. Capitalising on advances in probability concentration theory, this thesis merges the paradigms of Bayesian inference and optimisation to develop hybrid convergence inference techniques which are scalable, statistically principled, and operate over the Euclidean plane, celestial sphere, and 3-dimensional ball. Such techniques can quantify the plausibility of inferences at one-millionth the computational overhead of competing sampling methods. These Bayesian techniques are applied to the hotly debated Abell-520 merging cluster, concluding that observational catalogues contain insufficient information to determine the existence of dark-matter self-interactions. Further, these techniques were applied to all public lensing catalogues, recovering the then largest global dark-matter mass-map. The primary methodological contributions of this thesis depend only on posterior log-concavity, paving the way towards a, potentially revolutionary, complete hybridisation with artificial intelligence techniques. These next-generation techniques are the first to operate over the full 3-dimensional ball, laying the foundations for statistically principled universal dark-matter cartography, and the cosmological insights such advances may provide.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Bayesian Variational Regularisation for Dark Matter Reconstruction with Uncertainty Quantification
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery.ucl.ac.uk/id/eprint/10140480
Downloads since deposit
90Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item