Li, Jie;
(2021)
BGP-Multipath Routing in the Internet.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Li - 14098596.pdf Download (1MB) | Preview |
Abstract
BGP-Multipath, or BGP-M, is a routing technique for balancing traffic load in the Internet. It enables a Border Gateway Protocol (BGP) border router to install multiple ‘equally-good’ paths to a destination prefix. While other multipath routing techniques are deployed at internal routers, BGP-M is deployed at border routers where traffic is shared on multiple border links between Autonomous Systems (ASes). Although there are a considerable number of research efforts on multipath routing, there is so far no dedicated measurement or study on BGP-M in the literature. This thesis presents the first systematic study on BGP-M. I proposed a novel approach to inferring the deployment of BGP-M by querying Looking Glass (LG) servers. I conducted a detailed investigation on the deployment of BGP-M in the Internet. I also analysed BGP-M’s routing properties based on traceroute measurements using RIPE Atlas probes. My research has revealed that BGP-M has already been used in the Internet. In particular, Hurricane Electric (AS6939), a Tier-1 network operator, has deployed BGP-M at border routers across its global network to hundreds of its neighbour ASes on both IPv4 and IPv6 Internet. My research has provided the state-of-the-art knowledge and insights in the deployment, configuration and operation of BGP-M. The data, methods and analysis introduced in this thesis can be immensely valuable to researchers, network operators and regulators who are interested in improving the performance and security of Internet routing. This work has raised awareness of BGP-M and may promote more deployment of BGP-M in future because BGP-M not only provides all benefits of multipath routing but also has distinct advantages in terms of flexibility, compatibility and transparency.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | BGP-Multipath Routing in the Internet |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10138622 |
Archive Staff Only
View Item |