UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Cost Reduction With Guarantees: Formal Reasoning Applied To Blockchain Technologies

Schett, Maria A; (2021) Cost Reduction With Guarantees: Formal Reasoning Applied To Blockchain Technologies. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of schett_thesis_final.pdf]
Preview
Text
schett_thesis_final.pdf

Download (1MB) | Preview

Abstract

Blockchain technologies are moving fast and their distributed nature as well as their high-stake (financial) applications make it crucial to “get things right”. Moreover, blockchain technologies often come with a high cost for maintaining blockchain infrastructure and for running applications. In this thesis formal reasoning is used for guaranteeing correctness while reducing the cost of (i) maintaining the infrastructure by optimising blockchain protocols, and (ii) running applications by optimising blockchain programs—so called smart contracts. Both have a clear cost measure: for protocols the amount of exchanged messages, and for smart contracts the monetary cost of execution. In the first result for blockchain protocols starting from a proof of correctness for an abstract blockchain consensus protocol using infinitely many messages and infinite state, a refinement proof transfers correctness to a concrete implementation of the protocol reducing the cost to finite resources. In the second result I move from a blockchain to a block graph. This block graph embeds the run of a deterministic byzantine fault tolerant protocol, thereby getting parallelism “for free” and reducing the exchanged messages to the point of omission. For blockchain programs, I optimise programs executed on the Ethereum blockchain. As a first result, I use superoptimisation and encode the search for cheaper, but observationally equivalent, program as a search problem for an automated theorem prover. Since solving this search problem is in itself expensive, my second result is an efficient encoding of the search problem. Finally for reusing found optimisations, my third results gives a framework to generate peephole optimisation rules for a smart contract compiler.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Cost Reduction With Guarantees: Formal Reasoning Applied To Blockchain Technologies
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10137858
Downloads since deposit
174Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item