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Abstract

Blockchain technologies are moving fast and their distributed nature as well as

their high-stake (financial) applications make it crucial to “get things right”.

Moreover, blockchain technologies often come with a high cost for maintain-

ing blockchain infrastructure and for running applications. In this thesis for-

mal reasoning is used for guaranteeing correctness while reducing the cost

of (i) maintaining the infrastructure by optimising blockchain protocols, and

(ii) running applications by optimising blockchain programs—so called smart

contracts. Both have a clear cost measure: for protocols the amount of ex-

changed messages, and for smart contracts the monetary cost of execution. In

the first result for blockchain protocols starting from a proof of correctness for

an abstract blockchain consensus protocol using infinitely many messages and

infinite state, a refinement proof transfers correctness to a concrete implemen-

tation of the protocol reducing the cost to finite resources. In the second result

I move from a blockchain to a block graph. This block graph embeds the run of

a deterministic byzantine fault tolerant protocol, thereby getting parallelism

“for free” and reducing the exchanged messages to the point of omission. For

blockchain programs, I optimise programs executed on the Ethereum blockchain.

As a first result, I use superoptimisation and encode the search for cheaper,

but observationally equivalent, program as a search problem for an automated

theorem prover. Since solving this search problem is in itself expensive, my

second result is an efficient encoding of the search problem. Finally for reusing

found optimisations, my third results gives a framework to generate peephole

optimisation rules for a smart contract compiler.



Impact Statement

My work guarantees correctness while reducing two fundamental costs in

blockchain technologies, and more generally in distributed systems: commu-

nication cost and the cost of computation. I use formal reasoning, not only

for reasoning about correctness, but also for reasoning about optimisations of

blockchain protocols and blockchain programs reducing the cost of protocol

messages and the cost of executing programs. For the latter, as execution

costs money, we even have quantifiable savings. So my work gives evidence

that formal reasoning is “worth it”. I believe my work can inform future im-

plementations of blockchains and distributed systems to reduce their resource

consumption.

My thesis lives between academia and the blockchain world. In the first

part of my work—reasoning about blockchain protocols—I am inspired by ideas

from the blockchain community from openly accessible reports and give rigor-

ous, formal proofs. In the second part of my work—reasoning about blockchain

programs—I take ideas from the formal methods community and give opti-

mised real-world programs written for the blockchain.

For reasoning about blockchain protocols, I started from the byzantine

consensus protocol Stellar and from graph-based blockchain protocols, in par-

ticular the Blockmania protocol. Their correctness, and optimisations, were

formally proved. We presented the findings in two conference publications:

the Conference on Principles of Distributed Systems (OPODIS’19), and the ACM

Symposium on Principles of Distributed Computing (PODC’21). For reasoning

about blockchain programs I take the work on superoptimisation to programs
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written for the Ethereum blockchain gaining a large-scale data set for evalua-

tion, but also allows quantifying monetary savings. The findings appeared in

the Preproceedings of the Symposium on Logic-based Program Synthesis and

Transformation (LOPSTR’19), the Proceedings of the International Conference

on Computer-Aided Verification (CAV’20), and the Proceedings of the Workshop

on Formal Methods for Blockchains (FMBC’20).

Three freely available prototype implementations were published under

the Apache License 2.0 available on github: (i) ebso, the EVM bytecode super-

optimiser, (ii) the backend of syrup, a SYnthesiseR of sUPer-optimised smart

contracts, and (iii) ppltr, a populator for a peephole optimiser of a compiler.

The work on superoptimisation has partly inspired the research proposal1

GASOL: Gas Analysis and Optimization Toolkit funded by the Ethereum foun-

dation. I also generated benchmarks from our blockchain superoptimiser for

the SMT community smtlib.org. Finally, I applied our work on generating

peephole optimisation rules to the peephole optimiser of a fully verified com-

piler to Ethereum bytecode.

1cf. blog.ethereum.org/2021/07/01/esp-allocation-update-q1-2021

https://blog.ethereum.org/2021/07/01/esp-allocation-update-q1-2021/
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Chapter 1

Introduction

Blockchain technologies are a young and fast moving field. With a lack of

maturity come inefficiencies, as for example witnessed by under-optimised code

executed on the blockchain [26, 19], or the use of consensus instead of less

expensive primitives such as broadcast algorithms for cryptocurrencies [49].

The goal of this thesis is to remove inefficiencies and reduce the cost of running

blockchain technologies. However, reducing cost usually comes at a price. First

and foremost, engineers need to be certain that an optimisation is safe and

does not introduce unwanted behaviour, i.e., optimisations need to be sound.

To maintain this high-assurance I rely on formal reasoning: transferring the

correctness argument from the original to the optimisation. On the other

hand, cost comes from the fact that engineers need to find opportunities for

optimisations in the first place. To alleviate this I aim to make optimisations

reusable and, if possible, find them automatically.

1.1 Research Hypothesis

My research hypothesis is:

By applying formal reasoning to blockchain technologies we can reduce

execution costs while guaranteeing correctness [H].

I focus on reducing the cost in two settings, giving rise to the two parts

of my thesis: maintaining the blockchain through (I) blockchain protocols, and

the execution of (II) blockchain programs, i.e., smart contracts.
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In the first setting, blockchain protocols, participants communicate accord-

ing to protocols sending and receiving messages to arrive at a shared state of

the blockchain. My first goal is to reduce the number of messages which need

to be exchanged—a bottleneck in a network—while preserving the correctness

guarantees of the original protocol. Thus, my first sub-hypothesis is:

By applying formal reasoning to communication protocols we can reduce the

number of exchanged messages while guaranteeing correctness [Ha].

Here, I look at two specific instances: we define and show correctness of an

abstract version of the Stellar [75] protocol relying on infinitely many messages

and refine it to an implementation exchanging only finitely many messages,

but maintaining correctness, and we develop a framework to embed the run

of a deterministic protocol in a block graph thereby reducing the messages

exchanged. For the second setting, blockchain programs, I look at executing

a smart contract, which is subject to monetary fees as an incentive against

wasting resources. These fees also give a clear cost model and thus a clear

optimisation target. This yields my second sub-hypothesis:

By applying formal reasoning to smart contracts we can reduce the monetary

fees of their execution while guaranteeing correctness [Hb].

Here, I superoptimise [74] smart contracts employing a a constraint solver

to automatically find cheaper, but observationally equivalent programs. I

present three approaches, which are evaluated on the Ethereum blockchain

with Ethereum’s virtual machine (EVM): superoptimising EVM bytecode with

the constraint solver Z3 [32] implementing basic and unbounded superoptimi-

sation [55], synthesising superoptimised EVM bytecode with Max-SMT solvers,

and automatically generating peephole optimisation rules for improving a

smart contract compiler.

1.2 Summary of Chapters

Next I briefly summarize the goals and results of my five main results:



1.2. Summary of Chapters 11

Chapter 3: Correctness of a Federated Consensus Protocol. In this

chapter we prove the Stellar Consensus Protocol (SCP) [75] correct. We propose

an abstract version of SCP that uses Stellar’s federated voting primitive as a

black box. This abstract protocol, however, maintains infinite state possibly

sending infinitely many messages. By establishing a refinement between the

abstract protocol and a concrete implementation of SCP that uses only finite

state, we are carrying over the result about the correctness while reducing the

needed resources.

The contents of this chapter appeared in the Proceedings of the 23rd In-

ternational Conference on Principles of Distributed Systems (OPODIS’19) [44]

and an extended version is available on arXiv [45].

Chapter 4: Embedding A Protocol in a Block DAG. In this chapter

we give a generic framework to embed a deterministic byzantine fault tolerant

protocol P into a block DAG, and employ the block DAG to locally replay

interactions between servers. We prove that our embedding maintains all safety

and liveness properties of P , while efficiently compressing messages by utilising

the determinism of P and running many parallel instances of P essentially “for

free”. Our main insight is that a block DAG is essentially a reliable point-to-

point channel encoding Lamport’s happened-before relation [62].

The contents of this chapter appeared in the ACM Symposium on Princi-

ples of Distributed Computing (PODC’21) [98] and is available on arXiv [99].

Chapter 6: Blockchain Superoptimiser. In this chapter we optimise the

bytecode of the EVM through superoptimisation by encoding the operational

semantics of EVM instructions as SMT formulas and leveraging the constraint

solver Z3 to automatically find a cheaper bytecode. We present the EVM byte-

code superoptimiser ebso1 implementing basic and unbounded superoptimisa-

tion [55] and evaluate ebso on smart contracts from a programming competition

aimed at producing the cheapest EVM bytecode. Even in this already highly

optimised data set ebso still finds 19 optimisations and proves that around

1available at github.com/juliannagele/ebso

https://github.com/juliannagele/ebso
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17 % of the analysed instruction sequences are already optimal. Furthermore

we evaluate ebso on the 2500 most called smart contracts from the Ethereum

blockchain and find that, in our setting, unbounded superoptimisation outper-

forms basic superoptimisation.

The contents of this chapter have been accepted for presentation and

appeared in the pre-proceedings of the 29th International Symposium on Logic-

Based Program Synthesis and Transformation (LOPSTR’19) [84].

Chapter 7: Synthesising Optimisations. We aim to reduce the gas cost

of a smart contract by synthesizing optimised basic blocks with an efficient

Max-SMT encoding. Our approach and prototype implementation syrup2 out-

performs ebso by two orders of magnitude in gas savings and reduces the

time-outs from more than 90 % to less than 9 %. In this approach, we first ex-

tract a stack functional specification from the basic blocks of a smart contract,

which is simplified using rules that capture the semantics of the arithmetic

and bit-wise operations. From this we synthesize optimised blocks by an effi-

cient Max-SMT encoding. The efficiency is gained by avoiding the encoding of

semantics of the arithmetic and bit-wise operations and consequently an ex-

pensive ∃∀-quantification, and expressing the problem as a Max-SMT instead

of an SMT problem.

The contents of this chapter appeared in the Proceedings of the 32nd

International Conference on Computer-Aided Verification (CAV’20) [5].

Chapter 8: Populating a Peephole Optimiser. In this chapter we find op-

timisation rules for a peephole optimiser of a smart contract compiler. These

rules are normally constructed using human expertise, which is time-consuming

and far from systematic in exploring opportunities for optimisation. We pro-

pose a pipeline to automatically generate peephole optimisation rules and gen-

erate nearly 1k optimisation rules for the bytecode of the EVM. Our rules reduce

nearly 150k instructions from the 1000 most called contracts on the Ethereum

blockchain. Assuming that 10 % of the bytecode of a contract is executed

2backend available at github.com/mariaschett/syrup-backend

https://github.com/mariaschett/syrup-backend
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per call and that savings are uniformly distributed for an average gas price

of 27.6 gwei and an average ETH-USD course of $200.62 this translates to sav-

ings of more then $55 000. The superfluous instructions also currently waste

4.5 % of storage space. Our proposed pipeline applies superoptimisation to

an existing code base to obtain optimisations from which we generate peep-

hole optimisation rules by extracting their underlying patterns. We perform a

case study for the Ethereum blockchain and provide a prototype implementa-

tion with the tool ppltr3, which combines the superoptimiser ebso and the rule

generator sorg4.

The contents of this chapter appeared in the Proceedings of the 2nd Work-

shop on Formal Methods for Blockchains (FMBC’20) [100].

1.3 Collaboration

Chapter 3 is a collaboration with Álvaro Garćıa-Pérez then at the IMDEA

Software Institute. My main contributions are towards (i) developing the

pseudo-code of Algorithm 3 and Algorithm 5, and the (ii) proof of refinement

in Section 3.3. In [44] we also prove weak validity and termination of Algo-

rithm 3, as well as implications of servers lying about their initial position. As

I have made no major contribution to this part of the paper, I have omitted

these in my thesis. Chapter 4 is the joint work with my supervisor George

Danezis at University College London. I was the leading author of the paper.

Chapter 6 and Chapter 8 are the joint work with Julian Nagele then at Queen

Mary University of London. We both contributed equally to the papers and

prototypes. Chapter 7 is the joint work with Elvira Albert and Albert Rubio

from the Instituto de Tecnoloǵıa del Conocimiento, and the Complutense Uni-

versity of Madrid, and Pablo Gordillo from Complutense University of Madrid.

My main contributions are towards (i) the SMT encoding in Section 7.3 and the

corresponding implementation of the syrup backend, and (ii) the experiments

in Section 7.4.

3available at github.com/mariaschett/ppltr
4available at github.com/mariaschett/sorg

https://github.com/mariaschett/ppltr
https://github.com/mariaschett/sorg
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1.4 Complementary Activities

In this final section I will briefly present activities complementary to the work

in this thesis: my teaching experience, research presentations, research events,

community service, and industrial experience.

I gained teaching experience by delivering the course ECS652U Compilers

as a teaching fellow at Queen Mary University of London in the summer term

2020 based on Alex Aiken’s Cool programming language [1], supervising the

master thesis of Julius Rakenov based on Chapter 6, accomplished with dis-

tinction, titled “Superoptimising WebAssembly” in 2019 at UCL, and being a

teaching assistant at UCL for COMP0003: Theory of Computation, COMP0017:

Computability and Complexity Theory, and ENGS102P: Design and Professional

Skills: CS Scenario based on [92]. I gave research presentations of the work

in Chapter 4 at the ACM Symposium on Principles of Distributed Comput-

ing (PODC’21)5, and the work in Chapter 8 at the Second Workshop on For-

mal Methods for Blockchains (FMBC’20)6. I presented the work of Chapter 6

at the IMDEA Software Institute in Madrid, the 29th International Sympo-

sium on Logic-Based Program Synthesis and Transformation in Porto, and the

Complutense University of Madrid. Furthermore I presented a research ab-

stract Blockmania QED at the Doctoral Symposium at Formal Methods 2019

in Porto, and a summary of my research at the Research Spotlight Competition

of the London Hopper Colloquium 2020. I was fortunate to have been part of

several research events: I was invited to the Google Compiler and Program-

ming Language Summit 2019 in Munich where I presented my poster BFT

Protocols through a Joint Block DAG, and I received a travel grant to visit the

Verified Software Workshop 2019 in Cambridge, where I presented my poster

Formal Methods & The Blockchain. I received a grant to attend the Deep-

Spec Summer School 2018 in Princeton and I also attended the Ninth Summer

School on Formal Techniques 2019 in Menlo College in California, and the

Summer School Marktoberdorf 2019 in Germany. For community service, I co-
5recording available at youtu.be/zO1ENRsOViQ
6recording available at youtu.be/uXJKcf68vZs

https://youtu.be/zO1ENRsOViQ
https://youtu.be/uXJKcf68vZs
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chaired the CAV Artifact Evaluation Committee 2021 together with Clément

Pit-Claudel. I gained experience in reviewing as a sub-reviewer for the 39th

IEEE International Conference on Distributed Computing Systems 2019. In

two summer internship at Google on the Android Google Search App and at

Youtube, I gained software development and industrial experience.
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Chapter 2

Background: Protocols

In this chapter I first give the necessary background on blockchains. Next I

state the system model as the basis for Chapter 4 and Chapter 3, and similarly

cover relevant protocols in the next section.

2.1 Blockchains

As noted by Narayanan et al. [87, p.20], the term blockchain “has no standard

technical definition but is a loose umbrella term [referring to] systems that bear

varying levels of resemblance to Bitcoin and its ledger”. Neither will I attempt

a technical definition, but I will introduce common aspects most relevant for

my thesis: blockchains as data structures, as mechanisms to govern shared

state, and with respect to their history and applications.

Data Structures. One way to look at a blockchain is as a data structure

replicated in a distributed system. A blockchain is simply a chain of blocks.

Or, extended to a directed, acyclic graph: a block DAG. In either case the

imposed order is crucial: every block, except for the starting blocks—the gen-

esis blocks—contains a reference to one or more predecessor blocks similar to

hash chains or Merkle trees [80]. The reference is a cryptographic hash, cf.

Definition 2.2.1, which renders it computationally infeasible to tamper with

predecessor blocks making them effectively append-only or immutable. Every

block contains a set of transactions, or even programs, changing the state of

the blockchain.
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Governance of Shared State. The goal of the replicated blockchain is to

maintain shared state, i.e., to implement state machine replication [102]. For

example, for cryptocurrencies this shared state is keeping track of assets, e.g.,

of bitcoins in Bitcoin [85]. Servers maintain the blockchain and clients issue

transactions. However clients, and servers, may be malicious and act adversar-

ial. A famous example is the double-spend attack, where a client tries to spend

their assets twice. To counteract this the non-malicious servers have to agree

on a chronological order of transactions: they have to find consensus. However,

a majority-based consensus through voting is impossible without a one-to-one

correspondence between servers and identities: an adversarial server may vote

with more than one identity, i.e., “they” launch a Sybil attack [33]. One way to

validate identities is to pose resource-demanding challenges, e.g., participants

to give a proof-of-work [35, 33]. Then the blockchain has open membership or is

permissionless as no central authority has to guarantee for the one-to-one cor-

respondence between servers and identities as in permissioned blockchains [24].

Proof-of-work combined with an incentive system to reward good behaviour

enables consensus [87]. Servers get paid to maintain the blockchain—but the

payment is forfeited when they misbehave. Clients, on the other hand, pay

this fee—which will be important in Chapter 6–Chapter 8, where this payment

is a clear optimisation target. Proof-of-work is, by its nature, expensive—and

thus several alternatives such as proof-of-stake, or more generally proof-of-X,

have been suggested, see e.g., Bano et al. [11] for a review and classification

of consensus algorithms. Broadly, they can be classified as (i) “Nakamoto”

or “blockchain” consensus, and (ii) “classical” consensus drawing from the

distributed systems literature.

History and Applications. Next I present blockchain projects which are

most prominent or relevant for this thesis; for an overview see e.g. [87].

The first popular blockchain project in 2008 is Bitcoin, published by Satoshi

Nakamoto [85] promising a fully decentralized medium of exchange through

proof-of-work. In 2012 and 2014, Ripple [103] and Stellar [75] (cf. Chapter 3)
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1. Reliable delivery. If a correct server sends a message m to a correct
server s, then s eventually delivers m.

2. No duplication. No message is delivered by a correct server more
than once.

3. Authenticity. If some correct server s2 delivers a message m with
sender s1 and s1 is correct, then m was previously sent to s2 by s1.

Figure 2.1: Authenticated perfect point-to-point link after [23, Module 2.5].

proposed substituting the expensive proof-of-work consensus by a consensus

mechanism based on trust between participants. Recently, also blockchains

based on block DAGs have evolved—with impressive efficiency gains. Most

important for my thesis are Hashgraph [10], Blockmania [30], Aleph [41], and

Flare [96]. An overview of block DAG systems can be found in the SoK of

Wang et al. [110].

2.2 System Model

This section introduces the model for the protocols in Chapter 4 and Chap-

ter 3. A distributed system has a set of independent servers Srvrs which are

connected by a network communicating via message passing according to a

prescribed protocol to handle requests from clients. The network may be asyn-

chronous, with no upper-bound on message transmission delays, synchronous,

with a known upper-bound, or partially synchronous [34], that is synchronous

after a global stabilization time. In Chapter 3 we assume a partially syn-

chronous upper bound, in Chapter 4 the synchronicity assumptions depend

on the protocol to be interpreted. Synchronicity assumptions are needed to

circumvent known impossibilities such as the FLP theorem [37] and the CAP

theorem [40, 46].

Between servers we assume an authenticated perfect point-to-point links

after Cachin et al. [23, Module 2.5, page 42].

For secure communication, we assume the following cryptographic primi-

tives: secure cryptographic hash functions [79, p.332], and a digital signatures
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scheme.

Definition 2.2.1 Let # : A→ A′ be a secure cryptographic hash function. We

write #(x) for the hash of x ∈ A, and #(A) for the image of A under #. By

definition for any # it is computationally infeasible (1) to find any preimage m

such that #(m) = x when given any x for which a corresponding input is not

known (preimage-resistance), (2) given m to find a second preimage m′ 6= m

such that #(m) = #(m′) (second-preimage resistance), and (3) to find any

two distinct inputs m, m′ such that #(m) = #(m′) (collision resistance).

Every server s, and every client, can prove with their public/private key

pair (1 ) that they signed a message m by invoking sign(s,m) = σ on a mes-

sage m and obtaining a signature σ, then (2 ) any server or client can verify

with verifysign(s,m, σ) and s’s public key, that s signed m. We tacitly assume

that keys are generated and distributed to all servers and clients.

In in Chapter 4 and Chapter 3 our threat model is a byzantine failure

model1. We distinguish: a correct server or client follows the protocol, includ-

ing not stopping indefinitely. All other servers are faulty: a fail-stop server or

client may stop indefinitely, and a byzantine server or client can deviate arbi-

trarily from the protocol, including adversarial coordinating with other byzan-

tine servers and clients. Not only the servers and clients, but also the network

may fail: messages might arrive at different times at different servers or clients,

out of order, may be lost, or arrive multiple times. Finally, we assume that

any attacker has limited computational power, cannot break cryptographic

assumptions, and has limited (monetary) funds.

2.3 Protocols

We focus on protocols particularly relevant in the context of blockchains:

broadcast protocols, where a server broadcasts a value to every other server,

and consensus protocols, where the servers agree on a value. However, before
1The term “byzantine” was coined by Lamport [64] with an allegory on byzantine generals

planning to attack a city—with undetected traitors among them.
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1. Validity. If a correct server s broadcasts a value v, then every correct
server eventually delivers v.

2. No duplication. Every correct server delivers at most one value.
3. Integrity. If some correct server delivers a value v with sender s and

server s is correct, then v was previously broadcast by s.
4. Consistency. If some correct servers delivers a value v and another

correct server delivers a value v′, then v = v′.
5. Totality. If some value is delivered by any correct server, every cor-

rect server eventually delivers a value.

Figure 2.2: Byzantine reliable broadcast abstraction after [23, Module 3.12].

giving details on these protocols, we first investigate what it means for the im-

plementation of a protocol to be “correct”: an implementation of a protocol is

correct, if it guarantees the properties defined by the interface of the protocol,

e.g., in Figure 2.2 for byzantine reliable broadcast. These properties can be

classified as safety and liveness properties. A protocol is safe when “no bad

things happen”, and live when “good things happen eventually” [7, 23]. For

example, in a safe protocol, servers will not decide on two different values, and

in a live protocol, servers will eventually decide on a value.

Recall that our protocols have to be correct even in the presence of byzan-

tine servers. One way for protocols to be resilient to byzantine servers is

through quorums in byzantine quorum systems [72, 109]. We require (i) quo-

rum intersection: for any two quorums Q1 and Q2, their intersection Q1 ∩Q2

contains at least one correct server, and (ii) quorum availability: ensuring

at least one quorum with only correct servers. For threshold quorums with

f faulty servers we need at least 2f + 1 servers to tolerate fail-stop servers,

and 3f + 1 servers to tolerate byzantine servers [64]. To give an intuition for

fail-stop servers: if f + 1 servers are in quorums Q1 and Q2, every intersection

of quorums Q1 ∩Q2 contains at least one correct server. The idea underlying

Stellar trust-based quorums are byzantine quorum systems. Moreover Stellar’s

“federated voting” abstraction implements byzantine reliable broadcast [42].
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Algorithm 1: Authenticated double-echo broadcast.
1 process broadcast(s ∈ Srvrs)
2 echoed, readied, delivered := false ∈ Bool
3 broadcast(v ∈ Vals)
4 echoed := true
5 send ECHO v to every s′ ∈ Srvrs

6 when received ECHO v and not echoed
7 echoed := true
8 send ECHO v to every s′ ∈ Srvrs

9 when received ECHO v from 2f + 1 different s′ ∈ Srvrs and not
readied

10 readied := true
11 send READY v to every s′ ∈ Srvrs

12 when received READY v from f + 1 different s′ ∈ Srvrs and not
readied

13 readied := true
14 send READY v to every s′ ∈ Srvrs

15 when received READY v from 2f + 1 different s′ ∈ Srvrs and
not delivered

16 delivered := true
17 deliver(r)

Reliable Broadcast. An algorithm implements byzantine reliable broadcast,

if it implements the byzantine reliable broadcast abstraction in Figure 2.2. In

Algorithm 1 we show an implementation: authenticated double-echo broad-

cast [23, Algorithm 3.18] originated from Bracha [17]. The proof that it imple-

ments the abstraction can be found in [23]. Next we give a brief overview on

the mechanisms of 1, and introduce the pseudo-code notation. The notation

is based on Cachin et al. [23] and used in the algorithms in Chapter 3 and

Chapter 4.

To execute the protocol every server s in Srvrs needs to start a process

instance (line 1). Every protocol holds some internal state (line 2) as well as

several handlers which s executes whenever the corresponding condition holds

(e.g., line 9–11). The interface to the client is the request broadcast(v), called

by the client, for a value v at any one s ∈ Srvrs (line 3), and the indication
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deliver(v) when s broadcasted v (line 17). We write requests and indications,

as well as internal state in sans-serif. The servers communicate relying on

authenticated point-to-point channels [23] to send messages and update their

state based on received messages. Keywords in our language are written in

bold-face. The messages, written in true-text, are either ECHO v or READY v.

The state echoed, readied, delivered (line 2), and the received messages—

here left implicit—to determine e.g. received ECHO v from 2f + 1 different

s′ ∈ Srvrs (line 6). The protocol has two communication rounds. In the

first round every correct server echoes v to every server (lines 6–8). In the

second round: every correct server either received ECHO v from a quorum, i.e.

2f + 1 servers, and can thus send READY v to every server (lines 9–11), or after

receiving READY v from at least one correct node, i.e. f + 1, sends READY v to

every server (lines 12–14). Through this case, a correct server, which cannot

get a quorum of ECHO v, can still (safely) send READY v. After receiving READY v

from a quorum the protocol ends a correct server by invoking deliver(v).

Byzantine Consensus. For a blockchain—in spite of byzantine participants—

every honest participant should eventually “agree on the state”, i.e., they reach

consensus. Now while byzantine consensus is overkill for money transfer, it is

not clear if the same is true for executing smart contracts [49, 9]—the results

rely on the protocol transferring money, but smart contracts change the state

in more ways. With the rise of blockchain technologies many consensus al-

gorithms have been proposed with slightly different formulations and notions

of consensus. Most agree that consensus requires some form of (i) agreement

(ii) non-triviality, and (iii) termination [105]. In the context of this thesis I

rely on a notion from classical consensus by Cachin et al. [23]: a protocol im-

plements consensus in a byzantine environment, if it implements the consensus

abstraction in Figure 2.3. To give an intuition on the implementation of a

consensus protocol: for consensus in the fail-stop scenario there is Paxos [63]

or view-stamped replication [88]. On a very high level they have a sequence

of views with a leader responsible for progress in deciding on a value; if the
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1. Termination. Every correct server eventually decides on some value.
2. Integrity. No correct server decides twice.
3. Agreement. No two correct servers decide differently.
4. Weak validity. If all servers are correct and propose the same value v,

then no correct server decides a value different from v; furthermore, if
all servers are correct and some server decides v, then v was proposed
by some server.

Figure 2.3: Weak byzantine consensus after [23, Module 5.10].

others suspect the leader failed, they trigger a view change and safely replace

the current leader. For the byzantine scenario the most famous protocol is the

Practical Byzantine Fault Tolerance (PBFT) [25] protocol. It is an extension

of the previous view change protocol, requiring an additional communication

round.



Chapter 3

Correctness of a Federated Consensus Protocol

In this chapter we initially define an abstract version of the Stellar consensus

protocol [75] with a high cost as a trade-off for simplicity. This abstract pro-

tocol is infeasible, but warrants an easier proof of correctness. With this proof

of correctness, we then show a refinement to a more complex, but lower cost

solution: the concrete protocol. We then establish that the concrete proto-

col refines the abstract one, which reduces the number of exchanged messages

while guaranteeing correctness [Ha].

Blockchain proposals, such as Stellar and Ripple [103], allow for open mem-

bership using quorum-like structures typical for classical byzantine consensus

with closed membership. This is achieved by constructing quorums in a decen-

tralised way: each server independently chooses whom to trust, and quorums

arise from these individual decisions. In particular, in Stellar trust assump-

tions are specified using a federated byzantine quorum system (FBQS), where

each server chooses a set of servers such that each of the chosen servers would

convince the choosing server to accept the validity of a given statement. Con-

sensus is then implemented by a fairly intricate protocol whose key component

is federated voting—a protocol similar to Bracha’s protocol in Algorithm 1

for reliable byzantine broadcast [17, 23]. In this chapter we rigorously de-

fine the Stellar Consensus Protocol (SCP) and prove it correct. Our proof to

gives insights into its structure and its use of lower-level abstractions. Stellar’s

unique and novel way of constructing quorums—together with Stellar’s role

as a widely used protocol in practice—the original white paper [75] inspired
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several works developed alongside our work investigating Stellar’s mechanisms,

giving correctness arguments, and linking Stellar to established concepts in

literature [42, 69, 66, 68].

3.1 Federated Voting

We consider a system consisting of a finite set of servers Srvrs with byzantine

servers, and any two servers can communicate over an authenticated perfect

point-to-point link and a partially synchronous network. A federated byzantine

quorum system (FBQS) [75, 42] is a function F : Srvrs → 22Srvrs \ {∅} that

specifies a non-empty set of quorum slices for each server. We require that

a server is part of every one of its own quorum slices q: ∀s ∈ Srvrs ∀q ∈

F(s), s ∈ q. Quorum slices reflect the trust choices of each server. A non-

empty set of servers U ⊆ Srvrs is a quorum in an FBQS F iff U contains a slice

for each member, i.e., ∀s ∈ U ∃q ∈ F(s), q ⊆ U . In this chapter we assume for

simplicity that servers do not equivocate about their quorum slices, so that all

the servers share the same FBQS. However, a more realistic subjective FBQS [42]

is considered in our conference proceedings [44], where byzantine servers may

lie about their quorum slices and different servers have different views on the

FBQS.

A consensus protocol that runs on top of an FBQS may not guarantee

global agreement, because when servers choose slices independently, only a

subset of the servers may take part in a subsystem in which every two quorums

intersect in at least one correct server—a basic requirement of a byzantine

quorum system [72] to ensure agreement. To formalise which parts of the

system may reach agreement internally, we borrow the notions of intertwined

servers and intact set from [76]. Two servers s1 and s2 are intertwined iff they

are correct and every quorum containing s1 intersects every quorum containing

s2 in at least one correct server. Consider an FBQS F and a set of servers I.

The projection F|I of F to I is the FBQS over set I given by F|I(s) = {q ∩ I |

q ∈ F(s)}. For a given set of faulty servers, a set I is an intact set iff I is

a quorum in F and every member of I is intertwined with each other in the
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Algorithm 2: Federated voting with quorums Q.
1 process federated-voting(s ∈ Srvrs, t ∈ Tag)
2 voted, ready, delivered := false ∈ Bool
3 vote(a ∈ A)
4 if not voted then
5 voted := true
6 send VOTE(t, a) to every s′ ∈ Srvrs;

7 when received VOTE(t, a) from every u ∈ U for some U ∈ Q
such that s ∈ U and not ready

8 ready := true
9 send READY(t, a) to every s′ ∈ Srvrs;

10 when received READY(t, a) from every u ∈ B for some
s-blocking B and not ready

11 ready := true
12 send READY(t, a) to every s′ ∈ Srvrs;

13 when received READY(t, a) from every u ∈ U for some U ∈ Q
such that s ∈ U and not delivered

14 delivered := true
15 deliver(a);

projected FBQS F|I . The intact sets characterise those sets of servers that can

reach consensus. Crucial for showing consensus are quorums intersection and

disjoint maximal intact sets in the following lemma. The proof of the lemma

can be found in [45, Lemma 3 and 4].

Lemma 3.1.1 For intact sets I, I1, and I2 in an FBQS F holds (i) if any

two quorums U1 and U2 in F such that U1 ∩ I 6= ∅ and U2 ∩ I 6= ∅ then the

intersection U1 ∩ U2 contains some server in I, and (ii) if I1 ∩ I2 6= ∅ then

I1 ∪ I2 is an intact set in F .

One of the core components of the abstract consensus protocol in is fed-

erating voting (FV ) [75, 76] shown in Algorithm 2 corresponding to Stellar

broadcast in [42]. For FV we have a set of voting values A. FV allows each

correct server to vote for some a ∈ A through an invocation vote(a), and each

server may deliver some a′ ∈ A through an indication deliver(a′). Our con-

sensus protocol uses multiple instances of FV independently from each other.
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Given a maximal intact set I.

1. Validity for intact sets. If all servers in I vote for a, then all servers
in I eventually deliver a.

2. No duplication. Every correct server delivers at most one voting
value.

3. Consistency for intertwined servers. If two intertwined servers s and
s′ deliver a and a′ respectively, then a = a′.

4. Totality for intact sets. If a server in I delivers a voting value, then
every server in I eventually delivers a voting value.

Figure 3.1: Reliable byzantine voting for intact sets.

Each instance of FV is identified by a tag t from a set of tags Tag. Each server s

runs a process federated-voting(s, t) for each tag t and also the exchanged mes-

sages are tagged with t. FV adapts Algorithm 1 to the federated setting of

an FBQS: first, in lines 7–9, two servers in the same intact set I cannot send

READY messages with two different voting values, because this would require

two quorums of VOTE messages and these quorums would intersect in a correct

server in I after Lemma 3.1.1 (i). Second, lines 10–12 allow a server to send

a READY message even if it previously voted and uses the notion of s-blocking

set [75] for liveness guarantees. Given a server s, a set B is s-blocking iff B

overlaps each of s’s slices, i.e., ∀q ∈ F(s), q ∩B 6= ∅.

Lemma 3.1.2 For an intact set I in an FBQS F and s ∈ I holds no s-blocking

set B exists such that B ∩ I = ∅.

Proof 3.1.1 Since I is a quorum in F and by the definition of quorum, for

every server s ∈ I there exists one slice of s that lies within I.

If s is in an intact set I, the following lemma guarantees that if s sends a READY

message it has received VOTE from a quorum to which s belongs. The lemma

is analogous to [43, Lemma 36].

Lemma 3.1.3 For an FBQS F , a tag t, and an intact set I in F , consider

an execution of the instance for t of FV over F . The first server s ∈ I that
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sends a READY(t, a) message first needs to receive a VOTE(t, a) message from

every member of a quorum U to which s belongs.

Proof 3.1.2 Let s be any server in I. By Lemma 3.1.2 no s-blocking set

B exists such that B ∩ I = ∅. Therefore, the first server s ∈ I that sends a

READY(t, a) message does it through lines 7–9 of Algorithm 2, which means that

s received VOTE(t, a) messages from every member of a quorum U to which s

belongs.

FV satisfies the specification of reliable byzantine voting for intact sets in Fig-

ure 3.1. Again, the specification is similar to Figure 2.2. The full proof can be

found in [45].

Theorem 3.1.1 Let F be an FBQS. The instance FV over F satisfies the spec-

ification of reliable byzantine voting for intact sets in Figure 3.1.

3.2 Abstract Stellar Consensus Protocol

Assume a set Val of consensus values. Each correct server proposes some

x ∈ Val through an invocation propose(x), and each server may decide some

x′ ∈ Val through an indication decide(x′). We consider a variant of the weak

byzantine consensus specification in Figure 2.3 after [23] that we call non-

blocking byzantine consensus for intact sets, which is defined as in Figure 3.2.

First we introduce the abstract SCP (ASCP), which concisely specifies the

mechanism of SCP [75, 76] and highlights the modular structure present in

it1. Like Paxos [63], ASCP uses ballots—pairs 〈n, x〉, where n ∈ N+ a natural

positive round number and x ∈ Val a consensus value. We assume that Val is

totally ordered, and we consider a special null ballot 〈0,⊥〉, where ⊥ 6∈ Val.

Let Ballot = (N+ × Val) ∪ {〈0,⊥〉} be the set of ballots. We write b.n and

b.x respectively for the round and consensus value of ballot b. The set Ballot

is totally ordered, where we let b < b′ iff either b.n < b′.n, or b.n = b′.n

1More precisely, in this paper we focus on Stellar’s core ballot protocol, which aims to
achieve consensus. We abstract from Stellar’s nomination protocol—which tries to converge
(best-effort) on a value to propose—by assuming arbitrary proposals to consensus.
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Given a maximal intact set I.

1. Integrity. No correct server decides twice.
2. Agreement for intact sets. No two servers in I decide differently.
3. Weak validity for intact sets. If all servers are honest and every server

proposes x, then no server in I decides a consensus value different
from x; furthermore, if all servers are honest and some server in I
decides x, then x was proposed by some server.

4. Non-blocking for intact sets. If a server s in I has not yet decided
in some run of the protocol, then for every continuation of that run
in which all the malicious servers stop, server s eventually decides
some consensus value.

Figure 3.2: Weak byzantine consensus for intact sets.

and b.x < b′.x. We define the below-and-incompatible-than relation on ballots.

We say ballots b and b′ are compatible (written b ∼ b′) iff b.x = b′.x, and

incompatible (written b 6∼ b′) otherwise, where we let ⊥ 6= x for any x ∈ Val.

We say ballot b is below and incompatible than ballot b′ (written b � b′) iff

b < b′ and b 6∼ b′.

To better convey SCP’s mechanism, we let the abstract protocol in Al-

gorithm 3 use FV as a black box where servers may hold a binary vote on

each of the ballots: the voting values A are Booleans and Tag is the set of

ballots, i.e., the protocol considers a separate instance of FV for each ballot.

A server voting for a Boolean a for a ballot b that carries the consensus value

b.x encodes the aim to either abort the ballot (when a = false) or to commit it

(when a = true) thus deciding the consensus value b.x. We have dubbed ASCP

‘abstract’ because, although it specifies the protocol concisely, it is unsuited for

realistic implementations. On the one hand, each server s maintains infinite

state, because it stores a process federated-voting(s, b) for each of the infinitely

many ballots b in the array ballots (line 2 of Algorithm 3). On the other hand,

each server s may need to send or receive an infinite number of messages in

order to progress (lines 6, 8, 15 and 21 of Algorithm 3, which are explained in

the detailed description of ASCP below). This is done by assuming a batched
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network semantics (BNS) in which the network exchanges batches, which are

(possibly infinite) sequences of messages, instead of exchanging individual mes-

sages: the sequence of messages to be sent by a server when processing an event

is batched per recipient, and each batch is sent at once after the atomic pro-

cessing of the event; once a batch is received, the recipient server atomically

processes all the messages in the batch in sequential order. By convention, we

let the statement forall in lines 7 and 21 of Algorithm 3 consider the ballots b′

in ascending ballot order. In Section 3.3 we introduce a ‘concrete’ version of

SCP that is amenable to implementation, since servers in it maintain finite

state and exchange a finite number of messages; however, this version does not

use FV as a black box.

In a nutshell, ASCP works as follows: each server uses FV to prepare a

ballot b which carries the candidate value b.x, this is, it aborts every ballot

b′ � b, which prevents any attempt to decide a value different from b.x at

a round smaller than b.n; once b is prepared, the server uses FV again to

commit ballot b, thus deciding the candidate value b.x. For Algorithm 3,

we assume that each servers creates a process federated-voting(s, b) for each

ballot b, which is stored in the infinite array ballots[b] (line 2). The server

keeps fields candidate and prepared, which respectively contain the ballot that

s is trying to commit and the highest ballot prepared so far. Both candidate

and prepared are initialised to the null ballot (line 3). The server also keeps

a field round that contains the current round, initialised to 0 (line 4). Once s

proposes a value x, the server assigns the ballot 〈1, x〉 to candidate and tries

to prepare it by invoking FV’s primitive vote(false) for each ballot below and

incompatible than candidate (lines 5–7). This may involve sending an infinite

number of messages, which by BNS requires sending finitely many batches.

Once s prepares some ballot b by receiving FV’s indication deliver(false) for

every ballot below and incompatible than b, and if b exceeds prepared, the

server updates prepared to b (lines 8–9). The condition in line 8 may concern

an infinite number of ballots, but it may hold after receiving a finite number
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Algorithm 3: Abstract SCP with quorums Q.
1 process abstract-consensus(s ∈ Srvrs)
2 ballots := [new process federated-voting(s, b)]b∈Ballot

3 candidate, prepared := 〈0,⊥〉 ∈ Ballot
4 round := 0 ∈ N+ ∪ {0}
5 propose(x)
6 candidate := 〈1, x〉
7 for all b′ � candidate do ballots[b′].vote(false)

8 when ballots[b′].deliver(false) for every b′ � b and prepared < b
9 prepared := b

10 if candidate 6 prepared then
11 candidate := prepared
12 ballots[candidate].vote(true)

13 when ballots[b].deliver(true)
14 decide(b.x);

15 when exists U ∈ Q such that s ∈ U and for each u ∈ U exist
Mu ∈ {VOTE, READY} and bu ∈ Ballot such that round < bu.n
and either received Mu(bu, true) from u or received
Mu(b′, false) from u for every b′ ∈ [zu, bu) with zu < bu

16 round := min{bu.n | u ∈ U}
17 start-timer(F (round))

18 when timeout
19 if prepared = 〈0,⊥〉 then candidate := 〈round + 1, candidate.x〉;
20 else candidate := 〈round + 1, prepared.x〉;
21 for all b′ � candidate do ballots[b′].vote(false)

of batches by BNS. If prepared reaches or exceeds candidate, then the server

updates candidate to prepared, and tries to commit it by voting true for that

ballot (lines 10–12). Once s commits some ballot b by receiving FV’s indication

deliver(true) for ballot b, the server decides the value b.x (lines 13–14) and stops

execution.

If the candidate ballot of a server s can no longer be aborted nor commit-

ted, then s resorts to a time-out mechanism that we describe next. The primi-

tive start-timer(∆) starts the server’s local timer, such that a timeout event will

be triggered once the specified delay ∆ has expired. Invoking start-timer(∆′)

while the timer is already running has the effect of restarting the timer with
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the new delay ∆′. In order to start the timer, a server s needs to receive, from

each member of a quorum that contains s itself, messages that endorse either

committing or preparing ballots with rounds bigger than round (line 15 of Al-

gorithm 3). Since the domain of values can be infinite, the condition in line 15

requires that for each server u in some quorum U that contains s itself, there

exists a ballot bu with round bu.n > round, and either s receives from u a mes-

sage endorsing to commit bu, or otherwise s receives from u messages endorsing

to abort every ballot in some non-empty, right-open interval [zu, bu), whose up-

per bound is bu. This condition may require receiving an infinite number of

ballots, but it may hold after receiving a finite number of batches by BNS. Once

the condition in line 15 holds, the server updates round to the smallest n such

that every member of the quorum endorses to either commit or prepare some

ballot with round bigger or equal than n, and (re-)starts the timer with delay

F (round), where F is an unbound function that doubles its value with each

increment of n (lines 16–17). If the candidate ballot can no longer be aborted

or committed, then timeout will be eventually triggered (line 18) and the server

considers a new candidate ballot with the current round increased by one, and

with the value candidate.x if the server never prepared any ballot yet (line 19)

or the value prepared.x otherwise (line 20). Then s tries to prepare the new

candidate ballot by voting false for each ballot below and incompatible than

it (line 21). This may involve sending an infinite number of messages, which

by BNS requires sending finitely many batches. The condition for starting the

timer in line 15 does not strictly use FV as a black box. However, this use is

warranted because line 15 only ‘reads’ the state of the network. ASCP makes

every other change to the network through FV’s primitives. We demonstrate

Algorithm 3 interacting with Algorithm 2 on a concrete, small example in

Appendix A.1.

ASCP guarantees the safety properties of non-blocking byzantine consensus

in Figure 3.2. The full proof is in [45], in this thesis we show Agreement for

intact sets. The requirement in lines 8–12 of Algorithm 3 that a server prepares
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the candidate ballot before voting for committing it, enforces that if a voting

for committing some ballot within the servers of an intact set I succeeds, then

some server in I previously prepared that ballot:

Lemma 3.2.1 Consider an execution of ASCP with an intact set I. If a server

s1 ∈ I commits a ballot b, then some server s2 ∈ I prepared b.

Proof 3.2.1 Assume that s1 ∈ I commits ballot b. By line 7 of Algorithm 2,

s1 received READY(b, true) from every member of a quorum to which s1 belongs.

By Lemma 3.1.3 the first server to do so received VOTE(b, true) messages from

every member of a quorum U to which s1 belongs. Since s1 is intertwined

with every other server in I, there exists a correct server s2 in the intersection

U∩I that sent VOTE(b, true). The server s2 can send VOTE(b, true) only through

line 6 of Algorithm 2, which means that s2 triggers brs[b].vote(true) in line 12

of Algorithm 3. By line 8 of the same figure, this is only possible after s2 has

aborted every b′ � b, and the lemma holds.

Aborting every ballot below and incompatible to the candidate prevents

that one server in an intact set I prepares a ballot b1, and concurrently another

server in I sends READY(b2, true) with b2 below and incompatible than b1:

Lemma 3.2.2 Consider an execution of ASCP with an intact set I with

s1, s2 ∈ I, and b1 and b2 be ballots such that b2 � b1. The following two things

cannot both happen: server s1 prepares b1 and server s2 sends READY(b2, true).

Proof 3.2.2 Assume towards a contradiction that s1 prepares b1, and that

s2 sends READY(b2, true). By definition of prepare, server s1 aborted every

ballot b � b1. By line 7 of Algorithm 2, server s1 received READY(b, false)

from every member of a quorum Ub for each ballot b � b1. By assump-

tions, b2 � b1, and therefore s2 received READY(b2, false) from every mem-

ber of the quorum Ub2. By Lemma 3.1.3, the first server u1 ∈ I that sent

READY(b2, false) received VOTE(b2, false) from a quorum U1 to which u1 belongs.

Since s2 sent READY(b2, true) and by Lemma 3.1.3, the first server u2 ∈ I that
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sent READY(b2, true) received VOTE(b2, true) from a quorum U2 to which u2 be-

longs. Since u1 and u2 are intertwined, the intersection U1∩U2 contains some

correct server s, which sent both VOTE(b2, false) and VOTE(b2, true) messages.

By the use of the Boolean voted in line 3 of Algorithm 2 this results in a

contradiction and we are done.

Lemma 3.2.3 Consider an execution of ASCP with an intact set I. If a server

s1 ∈ I commits a ballot b1, then the largest ballot b2 prepared by any server

s2 ∈ I before s1 commits b1 is such that b1 ∼ b2.

Proof 3.2.3 Assume server s1 commits ballot b1. By the guard in line 13 of

Algorithm 2, server s1 received the message READY(b1, true) from every mem-

ber of a quorum to which s1 belongs, which entails that server s1 received

READY(b1, true) from itself. By Lemma 3.1.3, the first server u ∈ I that send

READY(b1, true) needs to receive a VOTE(b1, true) message from every member

of some quorum to which u belongs. Thus, u itself triggered brs[b1].vote(true),

which by lines 7 and 21 of Algorithm 3 means that u prepared ballot b1.

Hence, the largest ballot b2 such that there exists a server s2 ∈ I that triggers

brs[b2].vote(true) before s1 commits b1, is bigger or equal than b1. If b2 = b1,

then b2.x = b1.x and by lines 8–12 of Algorithm 3, server s2 prepares b2 before

it triggers brs[b2].vote(true) and the lemma holds.

If b2 > b1, then we assume towards a contradiction that b2.x 6= b1.x. By

lines 8–12 of Algorithm 3, server s2 prepared b2, but this results in a con-

tradiction by Lemma 3.2.2, because s1 and s2 are intertwined and s1 sent

READY(b1, true), but b1 � b2. Therefore b2.x = b1.x, and by lines 8–12 of

Algorithm 3, server s2 prepares b2 before it triggers brs[b2].vote(true).

Agreement for intact sets holds as follows: assume towards a contradiction

that two servers in I respectively commit ballots b1 and b2 with different values.

A server in I prepared the bigger of the two ballots by Lemma 3.2.1, which

results in a contradiction by Lemma 3.2.2. Finally, correctness of ASCP is

captured by Theorem 3.2.1 below. The full proof can be found in [45].
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Algorithm 4: Part 1/2: Bunched voting with quorums Q.
1 process bunched-voting(s ∈ Srvrs)
2 max-vt-prep,max-rd-prep,max-dl-prep := 〈0,⊥〉 ∈ Ballot
3 Bllts-vt-cmt,Bllts-rd-cmt,Bllts-dl-cmt := ∅ ∈ 2Ballot

4 prepare(b)
5 if max-vt-prep < b then
6 max-vt-prep := b
7 send VOTE(prep max-vt-prep) to every s′ ∈ Srvrs
8 end
9 end

10 when exists maximum b such that max-vt-prep < b and
exists U ∈ Q such that v ∈ U and for every u ∈ U received
VOTE(prep bu) where b′ � bu for every b′ � b

11 max-rd-prep := b
12 send READY(prep max-rd-prep) to every s′ ∈ Srvrs
13 end
14 when exists maximum b such that max-rd-prep < b and

exists s-blocking B such that for every u ∈ B received
READY(prep bu) where b′ � bu for every b′ � b

15 max-rd-prep := b
16 send READY(prep max-rd-prep) to every s′ ∈ Srvrs
17 end
18 when exists maximum b such that max-dl-prep < b and

exists U ∈ Q such that v ∈ U and for every u ∈ U received
READY(prep bu) where b′ � bu for every b′ � b

19 max-dl-prep := b
20 prepared(max-dl-prep)
21 end
22

Theorem 3.2.1 The ASCP protocol over F satisfies the specification of byzan-

tine consensus for intact sets in Figure 3.2.

3.3 Concrete Stellar Consensus Protocol

Next we introduce the concrete SCP (CSCP) which is amenable to implemen-

tation because each server s maintains finite state and only needs to send and

receive a finite number of messages in order to progress. CSCP relies on bunched

voting (BV) shown in Algorithm 4, which generalises FV and embodies all of

FV’s instances for each of the ballots.
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Algorithm 4: Part 2/2: Bunched voting with quorums Q.
22

23 commit(b)
24 if b 6∈ Bllts-vt-cmt and max-vt-prep = b then
25 Bllts-vt-cmt := Bllts-vt-cmt ∪ {b} send VOTE(cmt b) to

every s′ ∈ Srvrs

26 when received VOTE(cmt b) from every u ∈ U for some
U ∈ Q such that s ∈ U and b 6∈ Bllts-rd-cmt

27 Bllts-rd-cmt := Bllts-rd-cmt ∪ {b}
28 send READY(cmt b) to every s′ ∈ Srvrs

29 when received READY(cmt b) from every u ∈ B for some
s-blocking B and b 6∈ Bllts-rd-cmt

30 Bllts-rd-cmt := Bllts-rd-cmt ∪ {b}
31 send READY(cmt b) to every s′ ∈ Srvrs

32 when received READY(cmt b) from every u ∈ U for some
U ∈ Q such that v ∈ U and b 6∈ Bllts-dl-cmt

33 Bllts-dl-cmt := Bllts-dl-cmt ∪ {b}
34 committed(b)

CSCP considers a single instance of BV, and thus each server s keeps a

single process bunched-voting(s). In BV, servers exchange messages that con-

tain two kinds of statements: a prepare statement prep b encodes the aim

to abort the possibly infinite range of ballots that are lower and incompatible

than b; and a commit statement cmt b encodes the aim to commit ballot b.

Algorithm 4 depicts BV. A server s stores the highest ballot for which s has re-

spectively voted, readied, or delivered a prepare statement in fields max-vt-prep,

max-rd-prep, and max-dl-prep (line 2). It also stores the set of ballots for which

s has respectively voted, readied, or delivered a commit statement in fields

Bllts-vt-cmt, Bllts-rd-cmt, and Bllts-dl-cmt (line 3). All these fields are finite

and thus s maintains only finite state. When a server s invokes prepare(b), if b

exceeds the highest ballot for which s has voted a prepare, then the server up-

dates max-vt-prep to b and sends VOTE(prep b) to every other server (lines 4–7).

The protocol then proceeds with the usual stages of FV, with the caveat that

at each stage of the protocol only the maximum ballot is considered for which
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the server can send a message—or deliver an indication—with a prepare state-

ment. In particular, when there exists a ballot b that exceeds max-rd-prep and

such that s received a message VOTE(prep bu) from each member u of some

quorum to which s belongs, then the server proceeds as follows: it checks that

each b′ lower and incompatible than bu is also lower and incompatible than b

(line 10). If b is the maximum ballot passing the previous check for every

member u of the quorum, then the server updates the field max-rd-prep to

b and sends the message READY(prep b) to every other server (lines 11–12).

The server s checks similar conditions for the case when it receives messages

READY(prep bu) from each member u of a s-blocking set, and proceeds simi-

larly by updating max-rd-prep to b and sending READY(prep b) to every other

server (lines 14–16). The server will update max-dl-prep and trigger the indi-

cation prepared(b) when the same conditions are met after receiving messages

READY(prep bu) from each member u of a quorum to which s belongs (lines 18–

20). When a server s invokes commit(b) then the protocol proceeds with the

usual stages of FV with two minor differences (lines 23–34). First, a server s

only votes commit for the highest ballot for which s has voted a prepare state-

ment (condition max-vt-prep = b in line 24). Second, the protocol uses the sets

of ballots Bllts-vt-cmt, Bllts-rd-cmt and Bllts-dl-cmt in order to keep track of

the stage of the protocol for each ballot. The structure of CSCP in Algorithm 5

directly relates to ASCP in Algorithm 3. A server proposes a value x in line 5.

A server tries to prepare a ballot b by invoking prepare(b) in line 7, and re-

ceives the indication prepared(b) in line 8. A server tries to commit a ballot b

by invoking commit(b) in line 12, and receives the indication committed(b) in

line 13. A server decides a value x in line 14. Time-outs are set in lines 15–17

and triggered in line 18. Again, we demonstrate Algorithm 5 interacting with

Algorithm 4 on the same concrete, small example in Appendix A.2.

Next we establish a correspondence between CSCP in and ASCP: the con-

crete protocol observationally refines the abstract one, which means that any

externally observable behaviour of the former can also be produced by the
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Algorithm 5: Concrete SCP with quorums Q.
1 process concrete-consensus(s ∈ Srvrs)
2 brs := new process bunched-voting()
3 candidate, prepared := 〈0,⊥〉 ∈ Ballot
4 round := 0 ∈ N+ ∪ {0}
5 propose(x)
6 candidate := 〈1, x〉
7 brs.prepare(candidate)

8 when brs.prepared(b) and prepared < b
9 prepared := b

10 if candidate 6 prepared then
11 candidate := prepared
12 brs.commit(candidate)

13 when brs.committed(b)
14 decide(b.x)
15 when exists U ∈ Q such that v ∈ U and for each u ∈ U exist

Mu ∈ {VOTE, READY} and bu ∈ Ballot such that round < bu.n and
received Mu(stmtu bu) from u with stmtu ∈ {cmt,prep}

16 round := min{bu.n | u ∈ U}
17 start-timer(F (round))

18 when timeout
19 if prepared = 〈0,⊥〉 then candidate := 〈round + 1, candidate.x〉;
20 else candidate := 〈round + 1, prepared.x〉;
21 brs.prepare(candidate)

latter [36]. Informally, the refinement shows that for every execution of CSCP

there exists an execution of ASCP (with some behaviour of faulty servers)

such that each server in the intact set I decides the same value in both of

the executions. The refinement result allows us to carry over the correct-

ness of ASCP established in Theorem 3.2.1 to CSCP. We first define several

notions required to formalise our refinement result. A history is a sequence

of the events s.propose(x) and s.decide(x), where s is a correct server and

x a value. The specification of consensus assumes that s triggers an event

s.propose(x), thus a history will have s.propose(x) for every correct server s. A

concrete trace τ is a sequence of events that subsumes histories, and contains

events s.prepare(b), s.commit(b), s.prepared(b), s.committed(b), s.start-timer(n),
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s.timeout, s.send(m, s′), and s.receive(m, s′), where s is a correct server and

s′ is any server, b is a ballot, m is a message in {VOTE(stmt), READY(stmt)}

with stmt a statement in {prep b,cmt b}, and n is a round. An ab-

stract trace τ is a sequence of events that subsumes histories, and con-

tains events s.start-timer(n), s.timeout, and batched events s.vote-batch([bi], a),

s.deliver-batch([bi], a), s.send-batch([mi], s′), and s.receive-batch([mi], s′),where

s is a correct server and s′ is any server, n is a round, [bi] is a sequence of ballots,

a is a Boolean, and [mi] is a sequence of messages in {VOTE(b, a), READY(b, a)}.

The sequences of ballots and messages above, which represent a possibly infi-

nite number of ‘batched’ events, ensure that the length of any abstract trace

is bounded by ω. Given a trace τ , a history H(τ) can be uniquely obtained

from τ by removing every event in τ different from s.propose(x) or s.decide(x).

An execution of CSCP (respectively, ASCP) entails a concrete trace (respec-

tively, abstract trace) τ iff for every invocation and indication as well as for

every send or receive primitive in an execution of the protocol in Algorithm 5

(respectively, for every invocation, indication and primitive in an execution of

the protocol in Algorithm 3, where the vote, deliver, send and receive events

are batched together), τ contains corresponding events in the same order.

We are interested in traces that are relative to some intact set I. Given a

trace τ , the I-projected trace τ |I is obtained by removing the events s.ev ∈ τ

such that s 6∈ I.

Next, we define a simulation function which maps a trace of events in the

concrete protocol of Algorithm 5 to a trace of events in the abstract protocol

of Algorithm 3: every event in the concrete trace is mapped to an event in the

abstract trace. The key idea is that every single event in the concrete trace is

mapped to a batched event in the abstract trace unfolding e.g., for preparing a

ballot into a batch of triggering the event vote with false (3.2) for every ballot

below and incompatible, or one single event of voting for a prepare message

into a batch of voting false for every ballot below and incompatible, but not

yet voted for (3.6).
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Definition 3.3.1 We inductively define a simulation function σ from concrete

to abstract traces.

σ([ ]) = [ ] (3.1)

σ(τ · [s.prepare(b)]) = σ(τ) · s.vote-batch([b′, b′ � b], false) (3.2)

σ(τ · [s.commit(b)]) = σ(τ) · s.vote-batch([b′, φ(σ(τ)) < b′ 6 b], true) (3.3)

σ(τ · [s.prepared(b)]) = σ(τ) · s.deliver-batch([b′, b′ � b

∧ ∀s.deliver-batch(bs) ∈ σ(τ). (b′, false) 6∈ bs], false) (3.4)

σ(τ · [s.committed(b)]) = σ(τ) · deliver-batch([b], true) (3.5)

σ(τ · [s.op(VOTE(prep b), u)]) = σ(τ) · s.op-batch([M(b′, false), b′ � b

∧ ∀a ∈ Bool.∀s.op-batch(ms, u) ∈ σ(τ). M(b′, a) 6∈ ms], u) (3.6)

σ(τ · [s.op(READY(prep b), u)]) = σ(τ) · s.op-batch([M(b′, false), b′ � b

∧ ∀s.op-batch(ms, u) ∈ σ(τ). M(b′, false) 6∈ ms], u) (3.7)

σ(τ · [s.op(VOTE(cmt b), u)]) = σ(τ)·

s.op-batch([VOTE(b′, true), φ(σ(τ)) < b′ 6 b], u) (3.8)

σ(τ · [s.op(READY(cmt b), u)]) = σ(τ) · s.op-batch([READY(b, true)], u) (3.9)

σ(τ · [e]) = σ(τ) · [e] otherwise (3.10)

Here, φ(τ) = max{b | ∀b′ � b. s.b′.deliver(false) ∈ τ} and let op ∈

{send, receive} and M ∈ {VOTE, READY}.

The proof of the following Lemma A.2.6 is shown in the Appendix A. The

statement follows from a case analysis on the definition of σ by induction on τ .

For every case, we trace the execution of CSCP and by applying σ show that

the execution yields an execution in ASCP.

Lemma 3.3.1 Let I be some intact set and τ be a trace entailed by an execu-

tion of CSCP. For every finite prefix τ ′ of the projected trace τ |I , the simulated

ρ′ = σ(τ ′) is the prefix of a trace entailed by an execution of ASCP.

Theorem 3.3.1 can be established by showing that, for every finite prefix τ
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of a trace entailed by CSCP, the simulation σ(τ) is a prefix of a trace entailed

by ASCP.

Theorem 3.3.1 For an intact set I and for every execution of CSCP with

trace τ , there exists an execution of ASCP with trace ρ and H(τ |I) = H(ρ|I).

Proof 3.3.1 Let τ be the trace entailed by an execution of CSCP. We prove

that there exists a trace ρ entailed by an execution of ASCP such that H(τ |I) =

H(ρ|I). Assume towards a contradiction that for all traces ρ, if H(τ |I) =

H(ρ|I) then ρ is not a trace entailed by an execution of ASCP. Fix the trace

ρ to be σ(τ |I), which entails that H(τ |I) = H(ρ|I) by definition of σ and H.

Since the number of events in a trace entailed by ASCP is bounded by ω, we

denote the ith event of ρ as ei, with i a natural number. Since ρ is not a trace

entailed by an execution of ASCP by assumptions, there exists i ≥ 0 such that

the prefix [ei, . . . , ei] of ρ is a trace entailed by ASCP, but the prefix [e0, . . . , ei+1]

of ρ is not a trace entailed by ASCP. Since σ maps one event of a concrete trace

into one event of an abstract trace, there exists a finite prefix τ ′ of τ |I such

that σ(τ ′) = [e0, . . . , ei+1], but this leads to a contradiction because σ(τ ′) is a

trace of an execution of ASCP by Lemma A.2.6. Therefore, there exists a trace

ρ entailed by an execution of ASCP such that H(τ |I) = H(ρ|I).

By Theorem 3.2.1 every execution of ASCP enjoys the properties of weak

byzantine consensus, and so does every execution of CSCP by refinement.

Corollary 3.3.1 The CSCP protocol satisfies the specification of byzantine

consensus for intact sets in Figure 3.2

Proof 3.3.2 Let τ be the trace entailed by an execution of CSCP. Assume to-

wards a contradiction that the execution does not satisfy some of the properties

of Integrity, Agreement for intact sets, Weak validity for intact sets, or Non-

blocking for intact sets. By Theorem 3.3.1, there exists a trace ρ entailed by

an execution of ASCP over F and such that H(τ |I) = H(ρ|I). By definition

of history, H(τ |I) and H(ρ|I) coincide in their respective propose and decide

events. Since ρ|I is entailed by an execution of ASCP, this execution fails to
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satisfy some of the properties of Integrity, Agreement for intact sets, Weak

validity for intact sets, or Non-blocking for intact sets, which contradicts The-

orem 3.2.1.



Chapter 4

Embedding a Protocol in a Block DAG

Novel designs generalise a blockchain to a more generic directed acyclic graph

between blocks [110]: a block DAG. In this chapter we leverage block DAGs

and show that any deterministic byzantine fault tolerant protocol P can be

embedded in a block DAG while maintaining P ’s safety and liveness properties.

Because P is deterministic, and a block DAG essentially embodies Lamport’s

happened-before relations [62], every sever can locally replay P—as a black-

box—for every other server, inferring messages without explicitly receiving

them. This allows to omit the sending of every message, which can be deter-

mined from the protocol thereby reducing the number of exchanged messages.

We guarantee correctness by showing that a block DAG is a reliable point-to-

point link [Ha].

Block DAGs are now underlying several implementations of consensus pro-

tocols: Hashgraph [10] used by the Hedera network, as well as Aleph [41], Block-

mania [30], and Flare [96]. They report impressive performance results com-

pared to traditional protocols that materialise point-to-point messages as direct

network messages—especially as maintaining a joint block DAG is simple and

scalable and can leverage widely-available distributed key-value stores. How-

ever, their arguments are inherently tied to their specific applications and re-

quirements, but both specification and formal arguments of Hashgraph, Aleph,

Blockmania, and Flare are structured around two phases: (i) building a block

DAG, and (ii) running a protocol on top of the block DAG. When implemented,

their specification, and arguments for correctness, safety and liveness are far
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Figure 4.1: Components and interfaces.

from simple. The goal of our work is to give a clear separation of the high-level

protocol P and the underlying block DAG to allow for easy re-usability and

to strengthen the foundations and persuasiveness of systems based on block

DAGs.

Figure 4.1 shows the interfaces and components of our proposed block

DAG framework parametric by a deterministic BFT protocol P . At the top,

we have a user seeking to run one or multiple instances of P on servers Srvrs.

First, to distinguish between multiple protocol instances the user assigns them

a label ` from a set of labels L. Now, for P there is a set of possible re-

quests RqstsP . However, instead of requesting r ∈ RqstsP from si ∈ Srvrs

running P for protocol instance `, the user calls the high-level interface of our

block DAG framework: request(`, r) in shim(P). Internally, si passes (`, r) on to

gossip(G)—which continuously builds si’s block DAG G by receiving and dissem-

inating blocks. The passed (`, r) is included into the next block si disseminates,

and si also includes references to other received blocks, where cryptographic

primitives prevent byzantine servers from adding cycles between blocks [73].

These blocks are continuously exchanged by the servers utilizing the low-level

interface to the network to exchange blocks. Independently, indicated by the

dotted line, si interprets P by reading G and running interpret(G,P). To do so,

si locally simulates every protocol instance P with label ` by simulating one

process instance of P(`) for every server s ∈ Srvrs. To drive the simulation, si
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passes the request r read from a block in G to P , and then si simulates the

message exchange between any two servers based on the structure of the block

DAG and the deterministic protocol P . Therefore si moves messages between

in- and out-buffers MsP [in, `] and MsP [out, `]. Eventually, the simulation P(`)

of the server si will indicate i from the set of possible indications IndsP . We

show how the block DAG essentially acts as a reliable point-to-point link and

describe how any deterministic BFT protocol P can be interpreted on a block

DAG. Finally, after interpret indicated i, shim(P) can indicate i for ` to the

user of P . From the user’s perspective, the embedding of P acted as P , i.e.,

shim(P) maintained P’s interfaces and properties. We prove this and illustrate

the block DAG framework for P instantiated with byzantine reliable broadcast

protocol.

4.1 Building a Block DAG

The networking component of the block DAG protocol is very simple: it has one

core message type, namely a block, which is constantly disseminated. A block

contains authentication for references to previous blocks, requests associated

to instances of protocol P , meta-data and a signature. Servers only exchange

and validate blocks. From these blocks with their references to previous blocks,

servers build their block DAGs. Although servers build their block DAGs locally,

eventually correct servers have a joint block DAG G. As we show in the next

Section 4.2, the servers can then independently interpret G as multiple instances

of P .

We assume a fixed and finite set of servers Srvrs known by every s′ ∈ Srvrs

and we assume 3f + 1 servers to tolerate at most f byzantine servers. The

exact requirements on the network synchronicity depend on the protocol P ,

that we want to embed, e.g., we may require partial synchrony [34] to avoid

FLP [37]. The only network assumption we impose for building block DAGs is

the following:

Assumption 4.1.1 (Reliable Delivery) For two correct servers s1 and s2,

if s1 sends a block B to s2, then eventually s2 receives B.
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A directed graph G is a pair of vertices V and edges E ⊆ V× V. We write

∅ for the empty graph. If there is an edge from v to v′, that is (v, v′) ∈ E, we

write v ⇀ v′. If v′ is reachable from v, then (v, v′) is in the transitive closure of

⇀ , and we write ⇀+ . We write ⇀∗ for the reflexive and transitive closure,

and v ⇀n v′ for n > 0 if v′ is reachable from v in n steps. A graph G is acyclic,

if v ⇀+ v′ implies v 6= v′ for all nodes v, v′ ∈ G. We abbreviate v ∈ G if

v ∈ VG, and V ⊆ G if v ∈ G for all v ∈ V . Let G1 and G2 be directed graphs.

We define G1 ∪ G2 as (VG1 ∪ VG2 ,EG1 ∪ EG2), and G1 6 G2 holds if VG1 ⊆ VG2

and EG1 = EG2 ∩ (VG1 × VG1). Note, for 6 we not only require EG1 ⊆ EG2 ,

but additionally EG1 must already contain all edges from EG2 between vertices

in G1. The following definition for inserting a new vertex v is restrictive: it

permits to extend G only by a vertex v and edges to this v.

Definition 4.1.1 Let G be a directed graph, v be a vertex, and a E be a set

of edges of the form {(vi, v) | vi ∈ V ⊆ G}. We define insert(G, v, E) =

(VG ∪ {v},EG ∪ E).

This unconventional definition of inserting a vertex is sufficient for build-

ing a block DAG—and helps to establish useful properties of the block DAG in

the next lemma: (i) inserting a vertex is idempotent, (ii) the original graph is

a subgraph of the graph with a newly inserted vertex, and (iii) a block DAG

is acyclic by construction.

Lemma 4.1.1 For a directed graph G, a vertex v, and a set of edges E =

{(vi, v) | vi ∈ V ⊆ G}, the following properties of insert(G, v, E) hold: (i) if

v ∈ G and E ⊆ EG, then insert(G, v, E) = G; (ii) if E = {(vi, v) | vi ∈ V ⊆ G}

and v 6∈ G, then G 6 insert(G, v, E); and (iii) if G is acyclic, v 6∈ G, then

insert(G, v, E) is acyclic.

Proof 4.1.1 By definition of G and insert holds (i). For (ii), let G ′ =

insert(G, v, E). By definition of insert, VG ⊆ VG′. Assume v 6∈ G. As E con-

tains only edges such that (vi, v) where v 6∈ G, EG = EG′ ∩ (VG × VG) holds. For

(ii), let G ′ = insert(G, v, E). By definition of insert, VG ⊆ VG′. Assume v 6∈ G.
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As E contains only edges such that (vi, v) where v 6∈ G, EG = EG′ ∩ (VG × VG)

holds.

To give some intuitions, for Lemma 4.1.1 (ii), if v ∈ G and G ′ =

insert(G, v, E), then EG′ ∩ (VG × VG) = EG may not hold. For example, let

G have vertices v1 and v2 with EG = ∅, and G ′ = insert(G, v2, {(v1, v2)}) with

EG′ = {(v1, v2)}. Then we have EG 6= EG′ ∩ (VG × VG). For Lemma 4.1.1 (iii), if

v ∈ G, then insert(G, v, E) may add a cycle. For example, take G with vertices

{v1, v2} and EG = {(v1, v2)} then insert(G, v1, {(v2, v1)}) contains a cycle.

Based on this definition of graphs, we next define block DAGs. We start

with blocks.

Definition 4.1.2 A block B ∈ Blks has (i) an identifier n of the server s

which built B, (ii) a sequence number k ∈ N0, (iii) a finite list of hashes of

predecessor blocks preds = [ref(B1), . . . , ref(Bk)], (iv) a finite list of labels and

requests rs ∈ 2L×Rqsts, and (v) a signature σ = sign(n, ref(B)). Here, ref is a

secure cryptographic hash function computed from n, k, preds, and rs, but not

σ. By not depending on σ, sign(B.n, ref(B)) is well defined.

We use B and ref(B) interchangeably, which is justified by collision re-

sistance of ref (Definition 2.2.1(3 )). We use register notation, e.g., B.n or

B.σ, to refer to elements of a block B, and abbreviate B′ ∈ {B′ | ref(B′) ∈

B.preds} with B′ ∈ B.preds. Given blocks B and B′ with B.n = B′.n and

B′.k = B.k + 1. If B ∈ B′.preds then we call B a parent of B′ and write

B′.parent = B. We require that every block has at most one parent. Other-

wise, we consider B as not well formed, i.e., not valid. We call B a genesis

block if B.k = 0. A genesis block B cannot have a parent block, because

B.k = 0 and 0 is minimal in N0.

Lemma 4.1.2 For blocks B1 and B2, if B1 ∈ B2.preds then B2 6∈ B1.preds.

Proof 4.1.2 Let x1 = ref(B1) and x2 = ref(B2). By assumption, x1 ∈

B2.preds. Assume towards a contradiction that x2 ∈ B1.preds. Then, to com-
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Figure 4.2: A block DAG with 3
blocks B1, B2, and B3.
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Figure 4.3: A block DAG, where š1
is equivocating on the
blocks B3 and B4.

pute x1 we need to know x2 = ref(B2), but this contradicts preimage-resistance

of ref.

Lemma 4.1.2 prevents a byzantine server š to include a cyclic reference

between B̌ and B by (i) waiting for—or building itself—a block B with

ref(B̌) ∈ B.preds, and then (ii) building a block B̌ such that ref(B̌) ∈ B.

As with secure time-lines [73], Lemma 4.1.2 gives a temporal ordering on B

and B̌. This is a static, cryptographic property, based on the security of hash

functions, and not dependent on the order in which blocks are received on a

network. While this prevents byzantine servers from introducing cycles, they

can still build “faulty” blocks. So next we define three checks for a server to

ascertain that a block is well-formed. If a block passes these checks, the block

is valid from this server’s point of view and the server validated the block.

Definition 4.1.3 A server s considers a block B valid, written valid(s, B), if

(i) s confirms verifyσ(B.n, B.σ), i.e., that B.n built B, (ii) either (a) B is a

genesis block, or (b) B has exactly one parent, and (iii) s considers all blocks

B′ ∈ B.preds valid.

Especially, (ii) deserves our attention: a server š1 may still build two

different blocks having the same parent. However, š1 will not be able to create a

further block to ‘join’ these two blocks with a different parent—their successors

will remain split. Essentially, this forces a linear history from every block. So

both, B3 and B4 in Figure 4.3 are valid. However, a block B5 created by š1

with preds = [ref(B4), ref(B3) would not be valid, as it has more than one
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parent: B3 and B4.

We assume, that if a correct server s considers a block B valid, then s

can forward any block B′ ∈ B.preds. That is, s has received the full content of

B′—not only ref(B′)—and persistently stores B′. From valid blocks and their

predecessors, a correct server builds a block DAG:

Definition 4.1.4 For a server s, a block DAG G ∈ Dags is a directed acyclic

graph with vertices VG ⊆ Blks, where (i) valid(s, B) holds for all B ∈ VG, and

(ii) if B ∈ B′.preds then B ∈ VG and (B,B′) ∈ EG holds for all B′ ∈ VG.

Let B′ be a block such that valid(s, B′) holds and B ∈ G for all B ∈ B′.preds.

Then s inserts B′ into G by insert(G, B′, {(B,B′) | B ∈ B′.preds}) after Defi-

nition 4.1.1 and we write G.insert(B).

The preconditions guarantee that G.insert(B′) is a block DAG, as shown

by the following two lemmas.

Lemma 4.1.3 For a block DAG G and a block B ∈ G holds G = G.insert(B),

i.e., insert is idempotent.

Proof 4.1.3 By definition of insert on block DAGs E is fixed to {(B,B′) | B ∈

B′.preds}. Since B ∈ G also {(B,B′) | B ∈ B′.preds} ⊆ EG by definition of

block DAG. Thus, G.insert(B) = G by Lemma 4.1.1 (i).

Lemma 4.1.4 Let G be a block DAG for a server s and let B′ be a block

such that valid(s, B′) holds and for all B ∈ B′.preds holds B ∈ G. Let G ′ =

G.insert(B′). Then G ′ is a block DAG for s.

Proof 4.1.4 To show G ′ is a block DAG we need to show that G ′ adheres to

Definition 4.1.4. For condition (i) we have to show that s considers all blocks

in G ′ valid. By definition of insert holds VG′ = VG ∪ {B′}. As G is a block

DAG for s, valid(s, B) holds for all B ∈ VG and valid(s, B′) follows from the

assumption of the lemma. For condition (ii) we have to show that for every

backwards reference to B from the block B′, the block DAG G ′ contains B and an

edge from B to B′. The former—for all B ∈ B′.preds we have B ∈ G—holds by
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Algorithm 6: Building the block DAG G and block B.
1 module gossip(s ∈ Srvrs,G ∈ Dags, rqsts ∈ 2L×Rqsts)
2 B := {n : s, k : 0, preds : [ ], rs : [ ], σ : null} ∈ Blks
3 blks := ∅ ∈ 2Blks

4 when received B ∈ Blks and B 6∈ G
5 blks := blks ∪ {B}

6 when valid(s, B′) for some B′ ∈ blks
7 G.insert(B′)
8 B.preds := B.preds · [ref(B′)]
9 blks := blks \ {B′}

10 when B′ ∈ blks and B ∈ B′.preds where B 6∈ blks and B 6∈ G
11 send FWD ref(B) to B′.n

12 when received FWD ref(B) from s′ and B ∈ G
13 send B to s′

14 when disseminate()
15 B := {B with rs : rqsts.get(), σ : sign(s,B)}
16 G.insert(B)
17 send B to every s′ ∈ Srvrs
18 B := {n : s, k : B.k + 1, preds : [ref(B)], rs : [ ], σ : null}

assumption of the lemma. The latter—(B,B′) ∈ EG′ for B ∈ B′.preds— holds

by definition of insert. As G is a block DAG, condition (ii) holds for every block

in G. It remains to show, that G ′ is acyclic. If B′ ∈ G then by Lemma 4.1.3,

G ′ = G and G is acyclic. If B′ 6∈ G then G ′ is acyclic by Lemma 4.1.1 (iii).

Example 4.1.1 In Figure 4.2 we show a block DAG with three blocks B1, B2,

and B3, where B1 = {n = s1, k = 0, preds = [ ]}, B2 = {n = s2, k = 0, preds =

[ ]}, and B3 = {n = s1, k = 1, preds = [ref(B1), ref(B2)]}. Here, parent(B3) =

B1. Consider now Figure 4.3 adding the block: B4 = {n = s1, k = 1, preds =

[ref(B1), ref(B2)]}. While all blocks in Figure 4.3 are valid, with block B4, š1 is

equivocating on the block B3—and vice versa. We omitted rs in the block DAGs.

However, to give a small example: a possible request could be broadcast(42).

To build a block DAG and blocks every correct server follows the gossip

protocol in Algorithm 6. By building a block DAG every correct server will

eventually have a joint view on the system. By building a block, every server
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can inject messages into the system: either explicit messages from the high-

level protocol by directly writing those into the block, or implicit messages by

adding references to other blocks. In Algorithm 6, a server s builds (i) its block

DAG G in lines 4–13, and (ii) its current block B by including requests and ref-

erences to other blocks in lines 14–18. The servers communicate by exchanging

blocks. Assumption 4.1.1 guarantees, that a correct s will eventually receive a

block from another correct server. Moreover, every correct server s will regu-

larly request disseminate() in line 14 and will eventually send their own block B

in line 17. This is guaranteed by the high-level protocol (cf. Section 4.3).

Every server s operates on four data structures. The two data structures

which are shared with Algorithm 7 are given as arguments in line 1: (i) the

block DAG G, which Algorithm 7 will only read, and (ii) a buffer rqsts, where

Algorithm 7 inserts pairs of labels and requests. On the other hand, s also

keeps (iii) the block B which s currently builds (line 2), and (iv) a buffer blks

of received blocks (line 3). To build its block DAG, s inserts blocks into G in

line 7 and line 16. It is guaranteed that by inserting those blocks G remains a

block DAG by as shown by the following lemmas:

Lemma 4.1.5 For every correct server s executing gossip of Algorithm 6,

whenever the execution reaches line 16 then valid(s,B) holds.

Proof 4.1.5 We need to show, that once the execution reaches line 16 Defini-

tion 4.1.3 (i)–(iii) holds. As s is correct and signs B in line 15 (i) verifyσ(s,B.σ)

holds. We prove (ii) and (iii) by induction on the times n the execution reaches

line 16. For the base case, B is (a) a genesis block with B.k = 0 as initialized in

line 2. Moreover B has no parent. As s is correct and only inserts B′ in B.preds

in line 8 whenever s considers B′ valid in line 6, s considers all B′ ∈ B.preds

valid. In the step case, Bn+1 is updated in line 18. We show that (b) Bn+1

has exactly one parent Bn. By line 18, Bn+1.n = Bn.n and Bn+1.k = Bn.k + 1.

As Bn is inserted in Bn+1.preds in line 18, by definition Bn+1.parent = Bn. By

induction hypothesis, s considers Bn valid, and again, as s is correct and only

inserts B′ in B.preds in line 8 whenever s considers B′ valid in line 6, (iii) s
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considers all B′ ∈ B.preds valid.

Lemma 4.1.6 For every correct server s executing gossip of Algorithm 6 G is

a block DAG.

Proof 4.1.6 We prove the lemma by induction on the times n the execution

reaches line 7 or line 16 of Algorithm 6. As G is initialized to the empty block

DAG in Algorithm 8 in line 3, G is a block DAG for the base case n = 0. In

the step case, by induction hypothesis, G is a block DAG. By Lemma 4.1.4

G.insert(B′) is a block DAG if (i) valid(s, B′) holds, and (ii) for all B ∈ B′.preds

holds B′ ∈ G. The former (i), valid(s, B′), holds either by line 6 or by

Lemma 4.1.5. As s inserts any block B which s has received and considers

valid by lines 6–8, for the latter (ii) it suffices to show that s considers all

B ∈ B′.preds valid. As s considers B′ valid, by Definition 4.1.3 (ii), s consid-

ers all B ∈ B′.preds valid.

To insert a block, s keeps track of its received blocks as candidate blocks

in the buffer blks (line 4–5). Whenever s considers a B′ ∈ blks valid (line 6),

s inserts B′ in G (line 7). However, to consider a block B′ valid, s has to

consider all its predecessors valid—and s may not have yet received every

B ∈ B′.preds. That is, B′ ∈ blks but B 6∈ blks and B 6∈ G (cmp. line 10). Now,

s can request forwarding of B from the server that built B′, i.e. from s′ where

B′.n = s′, by sending FWD B to s′ (lines 10–11). To prevent s from flooding s′

an implementation would guard lines 10–11, e.g. by a timer ∆B′ . That is, we

implicitly assume that for every block B′ a correct server waits a reasonable

amount of time before (re-)issuing a forward request. The wait time should be

informed by the estimated round-trip time and can be adapted for repeating

forwarding requests.

On the other hand, s also answers to forwarding requests for a block B

from s′, where B ∈ B′.preds of some block B′ disseminated by s (lines 12–

13). It is not necessary to request forwarding from servers other than s′. We

only require that correct servers will eventually share the same blocks. This
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mechanism, together with Assumption 4.1.1 and s’s eventual dissemination of

B, allows us to establish the following lemma:

Lemma 4.1.7 For a correct server s executing gossip, if s receives a block B,

which s considers valid, then (i) every correct server will eventually receive B,

and (ii) every correct server will eventually consider B valid.

Proof 4.1.7 For (i), by assumption s considers B valid, and hence by lines 6–

8 adds a reference to B to B. As s is correct, s eventually will disseminate(),

and then s disseminates B in line 17. We refer to this disseminated B as B′.

By Assumption 4.1.1, every correct server will eventually receive B′. Assume

a correct server s′, which has received B′, but has not received B. As s′ has

not received B, by Definition 4.1.3 (iii), s′ does not consider B′ valid. After

time ∆B′ by lines 10–11 s′ will request B from s by sending FWD B. Again by

Assumption 4.1.1, after s receives FWD B from s′ by lines 12–13, s will send B

to s′, which will eventually arrive, and s′ receives B.

For (ii), we have to show, that valid(s′, B) eventually holds for all correct

servers s′. For Definition 4.1.3 (i), as s considers B valid and s is correct,

B has a valid signature. This can be checked by every s′. We show Defini-

tion 4.1.3 (ii) (a) and (iii) by induction on the sum of the length of the paths

from genesis blocks to B. For the base case, B does not have predecessors.

As s considers B valid, then B is a genesis block, and s′ will consider B a

genesis block, so Definition 4.1.3 (ii) (a) and (iii) hold. For the step case, let

B′ ∈ B.preds. By Lemma 4.1.7 ((i)), every correct server s′ will eventually

receive B′. By induction hypothesis, s′ will eventually consider B′ valid. The

same reasoning holds for every B′ ∈ B.preds. It remains to show that B has

exactly one parent or is a genesis block. Again, this follows by s considering

B valid. As B.parent ∈ B.preds s′ also considers B.parent valid.

In parallel to building G, s builds its current block B by (i) continuously

adding a reference to any block B′, which s receives and considers valid in

line 8 (adding at most one reference to B′ by Lemma 4.1.8), and (ii) eventually

sending B to every server in line 17.
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Lemma 4.1.8 For every block B every correct server s executing gossip of

Algorithm 6 inserts ref(B) at most once in any block B′ with B′.n = s.

Proof 4.1.8 By line 4 of Algorithm 6, a correct server adds a block B to blks

only if B 6∈ G, and as blks is a set, B appears at most once in blks. Either B

remains in blks, or by lines 6–8, for any block B′ with B′.n = s, after ref(B)

is inserted in B′, B ∈ G holds. Thus, for no future execution B 6∈ G holds and

therefore B 6∈ blks. As s is correct, it will not enter lines 6–8 again for B.

Just before s sends B, s injects literal inscriptions of (`i, ri) ∈ rqsts into B

in line 15. Now rs holds requests ri for the protocol instances P with label `i.

These requests will eventually be read in Algorithm 7. Finally, s signs B in

line 15, sends B to every server, and starts building its next B in line 18 by

incrementing the sequence number k, initializing preds with the parent block,

as well as clearing rs and σ.

Example 4.1.2 Recall the block DAG from Example 4.1.1, Figure 4.2. Assume

s2 holds this block DAG as G in Algorithm 6. Now, assume receives B5 = {n =

s1, k = 3, preds = [ref(B4)]}. Immediately, s2 stores B5 in blks (lines 3–4).

Now, as valid(s2, B5) does not hold, s2 sends FWD ref(B4) to B5.n (lines 10–

11). When s1 receives the message s1 will send B4 to s2 (lines 12–13). Once

s2 receives B4 = {n = s1, k = 2, preds = [ref(B3)]}, and as valid(s2, B4) holds,

s2 inserts B4 in G (lines 6–9). If s2 now receives B4 again, B4 will not be

stored in blks (line 4). Finally, valid(s2, B5) holds and s2 inserts B5 in G.

So far we established, how s builds its own block DAG. Next we want to

establish the concept of a joint block DAG between two correct servers s and

s′. Let Gs and Gs′ be the block DAG of s and s′. We define their joint block

DAG G ′ as a block DAG G ′ > Gs ∪ Gs′ . This joint block DAG is a block DAG for

s and for s′:

Lemma 4.1.9 Let s and s′ be correct servers with block DAGs Gs and Gs′.

Then their joint block DAG G > Gs ∪ Gs′ is a block DAG for s.
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Proof 4.1.9 Let bs = B1, . . . , Bk−1 be blocks such that Bi ∈ Gs′ but Bi 6∈ Gs
for 1 6 i < k. We show the statement by induction on |bs|. As Gs is a block

DAG for s, the statement holds for the base case. For the step case we pick

a Bi ∈ bs such that Bi.preds ∩ bs = ∅. Such a Bi exists, as in the worst

case, Gs and Gs′ are completely disjoint and Bi is a genesis block in Gs. It

remains to show that s considers Bi valid and all Bi.preds are in Gs. Then

by Lemma 4.1.4 Gs.insert(Bi) is a block DAG and by induction hypothesis the

statement holds. For all B′ ∈ Bi.preds holds B′ ∈ Gs by definition of bs.

Moreover, as Gs is the block DAG of s, s considers every B′ valid. Then by (iii)

of Definition 4.1.3, together with the fact that s′ is correct therefore (i) and (ii)

hold for s, s considers Bi valid.

Intuitively, we want any two correct servers to be able to ‘gossip some

more’ and arrive at their joint block DAG G ′.

Lemma 4.1.10 Let s and s′ be correct servers with block DAGs Gs and Gs′.

By executing gossip in Algorithm 6, eventually s has a block DAG G ′s such that

G ′s > Gs ∪ Gs′.

Proof 4.1.10 By Lemma 4.1.6 any block DAG G ′ obtained through gossip is a

block DAG, and by Lemma 4.1.9 G ′ is a block DAG for s. It remains to show that

by executing gossip, eventually G ′ will be the block DAG for s. As s′ received

and considers all B ∈ Gs′ valid, by Lemma 4.1.7 (ii) s will eventually consider

every B valid. By executing gossip, s will eventually insert every B in its block

DAG and G ′ will contain all B ∈ Gs′.

Lemma 4.1.11 If B1 ∈ G for the block DAG G of a correct server s, then

eventually for a block DAG G ′ of s where G ′ > G holds B2 ∈ G ′ and B2.n = s

and B1 ⇀ B2.

Proof 4.1.11 For a correct server s it holds that B1 ∈ G only after s inserted

B1 either in line 7 or in line 16. Then by either line 8 or 18, respectively,

B1 ∈ B.preds for B.n = s. As s is correct s will eventually call disseminate()

and s will reach line 16 for B and insert B to G for some G ′ > G.
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In the next section, we will show how s and s′ can independently interpret

a deterministic protocol P on this joint block DAG.

4.2 Interpreting a Protocol

Every server s interprets the protocol P embedded in its local block DAG G.

This interpretation is completely decoupled from building the block DAG in

Algorithm 6. To interpret one protocol instance of P tagged with label `,

server s locally runs one process instance of P with label ` for every other

server si ∈ Srvrs. Thereby, s treats P as a black-box which (i) takes a request

or a message, and (ii) returns messages or an indication. A server s can fully

simulate the protocol instance P for any other server because their requests

and messages have been embedded in the block DAG G by Algorithm 6. User

requests rj to P are embedded in a block B ∈ G in B.rs and s reads these

requests from the block and passes them on to the simulation of P . Since P is

deterministic, s can—after the initial request rj for P—compute all subsequent

messages which would have been sent in P by interpreting edges between

blocks, such as B1 ⇀ B2, as messages sent from B1.n to B2.n. There is no

need for explicitly sending these messages. Indeed, our goal is to show that

the interpretation of a deterministic protocol P embedded in a block DAG

implements a reliable point-to-point link.

We fix the following notation: the set of all messages in a protocol P is

MP . Every message m ∈ MP has a m.sender and a m.receiver. We assume an

arbitrary, but fixed, total order on messages: <M. A protocol P is deterministic

if a state q and a sequence of messages m ∈ MP determine state q′ and out-

going messages M ⊆ 2MP . In particular, deterministic protocols do not rely

on random behaviour such as coin-flips.

To treat P as a black-box, we assume the following high-level interface:

(i) an interface to request r ∈ RqstsP , and (ii) an interface where P indicates

i ∈ IndsP . When a request r reaches a process instance, we assume that it

immediately returns messages m1, . . . ,mk triggered by r. This is justified, as

s runs all process instances locally. As requests do not depend on the state of
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Algorithm 7: Interpreting protocol P on the block DAG G.
1 module interpret(G ∈ Dags,P ∈module)
2 I[B ∈ Blks] := false ∈ Bool
3 when B ∈ G where eligible(B)
4 B.PIs := copy B.parent.PIs
5 for every (`j ∈ L, rj ∈ Rqsts) ∈ B.rs
6 B.Ms[out, `j] := B.PIs[`j].rj
7 for every `j ∈ {`j | (`j, rj) ∈ Bj.rs ∧Bj ∈ G ∧Bj ⇀

+ B}
8 for every Bi ∈ B.preds
9 B.Ms[in, `j] := B.Ms[in, `j] ∪ {m | m ∈

Bi.Ms[out, `j] and m.receiver = B.n}

10 for every m ∈ B.Ms[in, `j] ordered by <M

11 B.Ms[out, `j] := B.Ms[out, `j] ∪B.PIs[`j].receive(m)

12 I[B] = true

13 when B.PIs[`j].i
14 indicate(`j, i, B.n)

the process instance, also these messages do not depend on the current state

of process instance. We also assume a low-level interface for P to receive a

message m. Again, we assume that when m reaches a process instance, it

immediately returns the messages m1, . . . ,mk triggered by m.

Algorithm 7 shows the protocol executed by s for interpreting a determin-

istic protocol P on a block DAG G. The key task is to ‘get messages from one

block and give them to the next block’.

Therefore s traverses through every B ∈ G. To keep track of which blocks

in G it has already interpreted, s uses I in line 2. Note, that edges in G impose

a partial order: s considers a block B ∈ G as eligible(B) for interpretation if

(i) I[B] = false, and (ii) for every Bi ∈ B.preds, I[Bi] = true holds. While

there may be more than one B eligible, every B ∈ G is interpreted eventually:

Lemma 4.2.1 For a block B ∈ G and a correct server executing interpret(G,P)

in Algorithm 7 every B is eventually picked in line 3.

Proof 4.2.1 To pick B in line 3, eligible(B) has to hold. As G is finite and
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acyclic, every B ∈ G is eligible(B) eventually.

Now s picks an eligible B in line 3 and interprets B in lines 4–12. To inter-

pret B, s needs to keeps track of two variables for every protocol instance `j:

1. the state of the process instance `j for a server si ∈ Srvrs in PIs[`j], and

2. the state of in-going and out-going messages in Ms[in, `j] and Ms[out, `j].

Our goal is to track changes to these two variables—the process in-

stances PIs and message buffers Ms—throughout the interpretation of G. To

do so, we assign their state to every block B. Before B is interpreted, we

assume B.PIs[`j] to be initialized with ⊥, and B.Ms[d ∈ [{in, out}, `j] with ∅.

They remain so while B is eligible:

Lemma 4.2.2 When the execution of interpret(G,P) reaches line 7 of Al-

gorithm 7 then for all `j ∈ {`j | (`j, r) ∈ Bj.rs ∧ Bj ∈ G ∧ Bj ⇀
∗ B} holds

B.PIs[`j] 6= ⊥.

Proof 4.2.2 We show the statement by induction on the length of the longest

path from the genesis blocks to B. The base cases n = 0 holds by assumption,

as PIs[`] is started on every genesis block. For the step case, by induction

hypothesis the statement holds for Bi ∈ B.preds, and as B.parent ∈ B.preds by

line 4 the statement holds.

Lemma 4.2.3 For B ∈ G if I[B] = false then B.Ms[d, `] = ∅ and B.PIs[`] =

⊥ for ` ∈ L and d ∈ {in, out}.

Proof 4.2.3 For every B, ` ∈ L, and d ∈ {in, out}, initially we have

B.Ms[d, `] = ∅ and B.PIs[`] = ⊥. Assume towards a contradiction that

B.Ms[d, `] 6= ∅ or B.PIs[`] 6= ⊥. As B.Ms[d, `] and B.PIs[`] are only mod-

ified in lines 4–12 after B is picked in line 3, then by line 12 I[B] = true

contradicting I[B] = false.

After interpreting B, 1. B.PIs[`j] holds the state of the process instance `j
of the server si, which built B, i.e., si = B.n, and 2. B.Ms[in, `j] holds the
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in-going messages for si and Ms[out, `j] the out-going messages from si for

process instance `j1.

As a starting point for computing the state of B.PIs[`j], s copies the

state from the parent block of B in line 4. For the base case, i.e. all (genesis)

blocks B without parents, we assume B.PIs[`j] := new process P(`j, si) where

si = B.n. This is effectively a simplification: we assume a running process

instance `j for every si ∈ Srvrs. In an implementation, we would only start

process instances for `j after receiving the first message or request for `j for

si = B.n. Now in our simplification, we start all process instances for every

label at the genesis blocks and pass them on from the parent blocks. This

leads us to our step case: B has a parent. As B.parent ∈ B.preds, B.parent

has been interpreted and moreover B.parent.n = si:

Lemma 4.2.4 For all B.PIs[`] 6= ⊥ holds that B.PIs[`] was started with

P(`, B.n).

Proof 4.2.4 Either (i) B is a genesis block, and then by assumption started

with B.n and `, or (ii) B has a parent and by line 4, PIs[`] is copied from

B.parent and as B.parent.n = B.n, B.PIs[`] was initialized with B.n and `

(Lemma 4.2.2).

Next, to advance the copied state on B, s processes 1. all incoming re-

quests rj given by B.rs in lines 5–6, and 2. all incoming messages from Bi.n

to B.n given by Bi ⇀ B in lines 8–11. For the former (1), s reads the labels

and requests from the field B.rs. Here rj is the literal transcription of the

user’s original request given to P . To give an example, if P is reliable broad-

cast, then rj could read ‘broadcast(42)’ (cf. Section 4.3). When interpreting,

s requests rj from B.n’s simulated protocol instance: B.PIs[`j].rj. For the

latter (2), s collects (i) in B.Ms[in, `] all messages for B.n from Bi.Ms[out, `]

where Bi ∈ B.preds in lines 8–9 and then feeds (ii) m ∈ B.Ms[in, `] to B.PIs[`]
1An equivalent representation would keep process instances PIs[B, `j , B.n] and message

buffers Ms[B, d ∈ {in, out}, `j ] explicitly as global state. We chose this notation to accentuate
the information flow throughout G.
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in lines 10–11 in order <M. This (arbitrary) order is a simple way to guaran-

tee that every server interpreting Algorithm 7 will execute exactly the same

steps. By feeding those messages and requests to B.PIs[`j] in lines 6 and 11

s computes 1. the next state of B.PIs[`j] and 2. the out-going messages from

B.n in B.Ms[out, `j]. By construction, m.sender = B.n for m ∈ B.Ms[out, `j],

cf. the following Lemma 4.2.5.

Lemma 4.2.5 If m ∈ B.Ms[out, `] then m.sender = B.n.

Proof 4.2.5 By lines 6 and 11 of Algorithm 7 m ∈ B.Ms[out, `] if either

m ∈ B.PIs[`].(B.rs) or m ∈ B.PIs[`].receive(m′) for some m′ of no importance.

Important is, that B.PIs[`] was initialized by B.n by Lemma 4.2.4, and thus

every out-going message m has m.sender = B.n. It remains to show that every

B with B.n = s was build by s, which follows by the signature B.n.

Lemma 4.2.6 If m ∈ B.Ms[out, `] then there is a block B′ such that (`, r) ∈

B′.rs and B′ ⇀∗ B.

Proof 4.2.6 In Algorithm 7, m ∈ B.Ms[out, `] only after the exe-

cution reaches either 1. line 6, and then B′ = B, or 2. line 11,

end then by line 7 exists a Bj such that (`j, r) ∈ Bj.rs for a label

` ∈ {`j | (`j, rj) ∈ Bj.rs ∧Bj ∈ G ∧Bj ⇀
+ B}.

Once, s has completed this, s marks B as interpreted in line 12 and can

move on to the next eligible block. After s interpreted B, the simulated process

instance B.PIs[`j] may indicate i ∈ Inds. If this is the case, s indicates i for `j
on behalf of B.n in lines 13–14. Note, that none of the steps used the fact that

it was s who interpreted B ∈ G. So, for every B, every s′ ∈ Srvrs will come to

the exact same conclusion.

Still we glossed over a detail, s actually had to take a choice—more than

one B may have been eligible in line 3. This is a feature: by having this choice

we can think of interpreting a G ′ with G ′ > G as an ‘extension’ of interpreting

G. And, for two eligible B1 and B2 it does not matter if we pick B1 before
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B2. Informally, this is because when we pick B1 in line 3, only the state with

respect to B1 is modified—and this state does not depend on B2:

Lemma 4.2.7 For a block B ∈ G and an ` ∈ L, if I[B] holds, (i) then

B.Ms[d, `] will never be modified again for every d ∈ {in, out}. (ii) then B.PIs[`]

will never be modified again.

Proof 4.2.7 For part (i), assume that B.Ms[d, `] is modified. This can only

happen in lines 6, 9, and 11 and only for B picked in line 3, but as I[B], B

cannot be picked in line 3, leading to a contradiction. For part (ii) assume

that B.PIs[d, `] is modified. This can only happen in lines 4 and 11, and only

for B picked in line 3, but as I[B], B cannot be picked in line 3, leading to a

contradiction.

Another detail we glossed over is line 7: when interpreting B, s interprets

the process instances of every `j relevant on B at the same time. Again, be-

cause `j 6= `′j are independent instances of the protocol with disjoint messages,

i.e., Bi.Ms[out, `j] in line 9 is independent of any Bi.Ms[out, `′j], they do not

influence each other and the order in which we process `j does not matter.

Finally, we give some intuition on how byzantine servers can influence G

and thus the interpretation of P . When running gossip, a byzantine server

š can only manipulate the state of G by (i) sending an equivocating block,

i.e. building a B and B′ with š = B.parent.n and š = B′.parent.n. When

interpreting B and B′, s will split the state for š and have two ‘versions’ of

PIs[`j]—B′.PIs[`j] and B.PIs[`j]—sending conflicting messages for `j to servers

referencing B and B′. However, as P is a BFT protocol, the servers si simu-

lating P (run by s) can deal with equivocation. Then š could (ii) reference

a block multiple times, or (iii) never reference a block. Again as P is a BFT

protocol, the servers si simulating P can deal with duplicate messages and

with silent servers.

Going back to Algorithm 7, the key task of s interpreting G is to get

messages from one block to the next block. So we can see this interpretation
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s1

s2

B1

in = ∅
out = m1 . . . mk to {s1, s2}

B2

B3

k1 k2

in = m1 . . . mk from {s1}
out = m′1 . . . m′k′ to {s1, s2}

in = m1 . . . mk from {s1}
out = m′′1 . . . m′′k′′ to {s1, s2}

Figure 4.4: Interpretation of a block DAG.

of a block DAG as an implementation of a communication channel. That is,

for a correct server s executing s.interpret(G,P) (i) a server s1 sends messages

m1, . . . ,mk for a protocol instance `j in either line 6 or line 11 of Algorithm 7,

and (ii) a server s2 receives a message m for a protocol instance `j in line 11

of Algorithm 7.

Example 4.2.1 Figure 4.4 shows Ms[in, `] and Ms[out, `] for some label `.

The messages m1, . . . ,mk in B1 were not triggered by any input as in = ∅,

so they stem from a request to s1. Next, in the interpretation the m1, . . . ,mk

are moved to Ms[in, `] of the corresponding successor blocks B2 and B3. There,

m1, . . . ,mk′ trigger messages m′1, . . . ,m′k and m′′1, . . . ,m′′k′′ in Ms[out, `], respec-

tively.

The next lemma relates the sent and received messages with the message

buffers Ms and follows from tracing changes to the variables in Algorithm 7:

Lemma 4.2.8 For a correct server s executing s.interpret(G,P)

(i) a server s1 sends m for a protocol instance `′ iff there is a B1 ∈ G with

B1.n = s1 such that m ∈ B1.Ms[out, `′] for a B′ ∈ G with (`′, r) ∈ B′.rs

and B′ ⇀∗ B1.

(ii) a server s2 receives a message m for protocol instance `′ iff there are

some B1, B2 ∈ G with B1 ⇀ B2 and B2.n = s2 and m ∈ B2.Ms[in, `′] for

a B′ ∈ G such that (`′, r) ∈ B′.rs and B′ ⇀∗ B1.
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Proof 4.2.8 By definition s1 sends m for some protocol instance `′ if s reaches

in Algorithm 7 either line 6 with B.rs, or line 11 with B.PIs[`′].receive(m) for

some B picked in line 3. By Lemma 4.2.2 B.PIs[`′] 6= ⊥ and B.PIs[`′].n = s1

by assumption, by Lemma 4.2.4 B.n = s1. B will be our witness for B1. Now

m ∈ B.Ms[out, `′], by the assignment in either line 6 with (`′, r) ∈ B.rs (by

line 5), or in line 11 with (`′, r) ∈ Bj.rs for some Bj ⇀
+ B (by line 7). Bj

is our witness for B′ 6= B1. For the other direction, we have B1 ∈ G with

B1.n = s1 such that m ∈ B1.Ms[out, `′] for a B′ ∈ G with (`′, r) ∈ B′.rs and

B′ ⇀∗ B1. By Lemma 4.2.1, eventually B1 is picked in Algorithm 7 line 3. By

assumption, m ∈ B1.Ms[out, `′] through either (i) line 6, or (ii) as B′ ⇀+ B1

and thus `′ ∈ {`j | (`j, r) ∈ Bj.rs∧Bj ∈ G ∧Bj ⇀
+ B} from line 11. Then, by

definition, s1 sends m for protocol instance `′.

The following lemma shows our key observation from before: interpreting

a block DAG is independent from the server doing the interpretation. That is,

s and s′ will arrive at the same state when interpreting B ∈ G.

Lemma 4.2.9 If G 6 G ′then for every B ∈ G, a deterministic protocol P and

correct servers s and s′ executing s.interpret(G,P) and s′.interpret(G ′,P) it

holds that B.PIs[`j] = B.PIs′[`j] and B.Ms[out, `j] = B.Ms′[out, `j] for (`j, r) ∈

Bj.rs with Bj ⇀
n B for n > 0.

Proof 4.2.9 In this proof, when executing s′.interpret(G ′,P) we write Ms′ and

PIs′ to distinguish from Ms and PIs when executing s.interpret(G,P). We show

B1.Ms[out, `j] = B1.Ms′[out, `j] and B1.PIs[`j] = B1.PIs′[`j] by induction on

n—the length of the path from Bj to B1 in G and G ′. For the base case we

have B1 = Bj and `j ∈ {`j | (`j, rj) ∈ B1.rs}. By Lemma 4.2.1, B1 is picked

eventually in line 3 of Algorithm 7 when executing s.interpret(G,P). Then, by

line 6 B1.Ms[out, `] is B1.PIs[`j].(B1.rs). By the same reasoning, when execut-

ing s′.interpret(G ′,P), B1.Ms′[out, `] = B1.PIs[`j].(B1.rs). As B1.PIs[`j].(B1.rs)

are deterministic and depend only on B1, `j, and P, we know that B1.PIs[`] =

B1.PIs′[`] and B1.PIs[`] = B1.PIs′[`], and conclude the base case. For the
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step case by induction hypothesis for Bi ∈ B1.preds with Bj ⇀
n−1 Bi holds

(i) Bi.Ms[out, `j] = Bi.Ms′[out, `j], and (ii) Bi.PIs[`j] = Bi.PIs′[`j]. Again by

Lemma 4.2.1, B1 is picked eventually in line 3 of Algorithm 7 when executing

s.interpret(G,P) and s′.interpret(G ′,P). In line 4 and as B1.parent ∈ B1.preds

and (ii), now B1.PIs[`j] = B1.PIs′[`j]. Now, as P is deterministic, we only

need to establish that B1.Ms[in, `j] = B1.Ms′[in, `j] to conclude that B1.PIs[`j] =

B1.PIs′[`j] and B1.Ms[out, `j] = B1.Ms′[out, `j], which as (`j, r) 6∈ B1.rs, is only

modified in this line 11. By Lemma 4.2.3 below, we know for both executions

that B1.Ms[in, `j] = B1.Ms′[in, `j] = ∅, before B1 is picked. Now, by (i) and

line 9 B1.Ms[in, `j] = B1.Ms′[in, `j], and we conclude the proof.

A straightforward consequence of Lemma 4.2.9 is, that when in the inter-

pretation of s, a server s1 sends a message m for `j, then s1 sends m in the

interpretation of s′:

Lemma 4.2.10 For a correct server s executing s.interpret(G,P) if a server

s1 sends a message m for a protocol instance `j, then s1 sends m for a correct

server s′ executing s′.interpret(G ′,P) for a block DAG G ′ > G.

Proof 4.2.10 Again, in the following proof, we write Ms′ and PIs′ when

executing s′.interpret(G ′,P) to distinguish from Ms and PIs when executing

s.interpret(G,P). As s1 sends a message m for a protocol instance `j, by

Lemma 4.2.8 (i) there is a B1 ∈ G with B1.n = s1 such that m ∈ B1.Ms[out, `j]

for a Bj ∈ G with (`j, r) ∈ Bj.rs and Bj ⇀
n B1 for n > 0. By G ′ > G, B1 ∈ G,

Bj ∈ G, and the path Bj ⇀
n B1 are in G ′. By Lemma 4.2.9 m ∈ B1.Ms′[out, `j],

and then by Lemma 4.2.8 (i), s1 sends s m for a correct server s′ executing

s′.interpret(G ′,P).

Curiously, s1 does not have to be correct: we know s1 sent a block B in G,

that corresponds to a message m in the interpretation of s. Now this block will

be interpreted by s′ and the same message will be interpreted—and for that

the server s1 does not need to be correct. By Lemma 4.2.11 interpret(G,P) has

the properties of an authenticated perfect point-to-point link after [23, Module

2.5, p. 42] in Figure 2.1.
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Lemma 4.2.11 For a block DAG G and a correct server s executing

s.interpret(G,P) holds

(i) if a correct server s1 sends a message m for a protocol instance ` to a

correct server s2, then s2 eventually receives m for protocol instance ` for

a correct server s′ executing s′.interpret(G ′,P) and a block DAG G ′ > G

( reliable delivery).

(ii) for a protocol instance ` no message is received by a correct server s2

more than once ( no duplication).

(iii) if some correct server s2 receives a message m for protocol instance ` with

sender s1 and s1 is correct, then the message m for protocol instance `

was previously sent to s2 by s1 ( authenticity).

We first give a proof sketch: for (i), we observe that every message m

sent in s.interpret(G,P) will be sent in s′.interpret(G ′,P) for G ′ > G by

Lemma 4.2.10. Now by Lemma 4.1.10, s′ will eventually have some G ′ > G.

By Lemma 4.2.8 (i) we have witnesses B1, B2 ∈ G ′ with B1 ⇀ B2, and by

Lemma 4.2.8 (ii) we found a witness B2 to receive the message on when ex-

ecuting s′.interpret(G ′,P). For (ii), we observe, that duplicate messages are

only possible if s2 inserted the block B1, which gives rise to the message m, in

two different blocks built by s2, but this contradicts the correctness of s2 by

Lemma 4.1.8. For (iii), we observe that only s1 can build and sign any block

B1 with s1 = B.n, which gives rise to m.

Proof 4.2.11 For (i) reliable delivery, by assumption s1 sends a message m

to a correct server s2 for a correct server s executing s.interpret(G,P). By

Lemma 4.1.10 s′ will eventually have some G1 > G. Then by Lemma 4.2.10,

s1 sends m in s′.interpret(G1,P) for G1 > G. Then by Lemma 4.2.8(i) there is a

B1 ∈ G1 with B1.n = s1 such that m ∈ B1.Ms[out, `j] for Bj ∈ G1 with (`j, r) ∈

Bj.rs and Bj ⇀
∗ B1. With B1 we found our first witness. By Lemma 4.1.11,

there is G2 > G1 such that B2 ∈ G2 and B2.n = s2 and B1 ⇀ B2. Then by

Lemma 4.1.10 eventually s′ will have some G ′ > G2. By m ∈ B1.Ms[out, `j],
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B1 ⇀ B2 and m.receiver = s2 by assumption, by lines 9–10 of Algorithm 7

we have B.m ∈ Ms[in, `j]. Now we have found our second witness B2. By

Lemma 4.2.8 (ii), s2 receives m in s′.interpret(G ′,P)

For (ii) no duplication, we assume towards a contradiction, that s2 received

m more than once. Then by Lemma 4.2.8(ii) there are some B1, B2 ∈ G with

B1 ⇀ B2, B2.n = s2 and m ∈ B2.Ms[in, `], and B′1 ⇀ B′2, B′2.n = s2 and

m ∈ B′2.Ms[in, `] for a Bj ∈ G such that (`, r) ∈ Bj.rs and Bj ⇀
∗ B1, but

B2 6= B′2. That s2 received the exact same message m twice is only possible, if

B1 = B′1. That is, s2 built B′2 6= B2 and inserted B1 in both, which contradicts

Lemma 4.1.8 as s2 is correct.

For (iii) authenticity, by Lemma 4.2.8 (ii) there are some B1, B2 ∈ G

with B1 ⇀ B2 and B2.n = s2 and m ∈ B2.Ms[in, `] for a B ∈ G such that

(`, r) ∈ Bj.rs and Bj ⇀
∗ B1. Then by line 9 of Algorithm 7 exists an Bi ∈

B2.preds such that m ∈ Bi.Ms[out, `]. As m ∈ Bi.Ms[out, `] by Lemma 4.2.5

Bi.n = m.sender and as m.sender = s1, Bi.n = s1. Bi will be our witness for

B1. As m ∈ Bi.Ms[out, `] by Lemma 4.2.6 there is a B′ such that (`, r) ∈ B′.rs

and B′ ⇀∗ Bi. B′ is our witness for Bj. Hence there is a B1 ∈ G with

B1.n = s1 such that m ∈ B1.Ms[out, `] for a B1 ∈ G with (`, r) ∈ Bj.rs and

Bj ⇀
∗ B1 and by Lemma 4.2.8 (i) s1 m was sent by s1.

Before we compose gossip and interpret in the next section under a shim, we

highlight the key benefits of using interpret in Algorithm 7. By leveraging the

block DAG structure together with P ’s determinism, we can compress messages

to the point of omitting some of them. When looking at line 11 of Algorithm 7,

the messages in the buffers Ms[out, `] and Ms[in, `] have never been sent over the

network. They are locally computed, functional results of the calls receive(m).

The only ‘messages’ actually sent over the network are the requests ri read

from B.rs in line 6. To determine the messages following from these request,

the server s simulates an instance of protocol P for every si ∈ Srvrs—simply by

simulating the steps in the deterministic protocol. However, not every step can

be simulated: as s does not know si’s private key, s cannot sign a message on
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Algorithm 8: Interfacing between gossip, interpret and user of P .
1 module shim(s ∈ Srvrs,P ∈module)
2 rqsts := ∅ ∈ 2L×Rqsts

3 G := ∅ ∈ Dags
4 gssp := new process gossip(s,G, rqsts)
5 intprt := new process interpret(G,P)
6 when request(` ∈ L, r ∈ Rqsts)
7 rqsts.put(`, r)

8 when intprt.indicate(`, i, s′) where s′ = s
9 indicate(`, i)

10 repeatedly
11 gssp.disseminate()

si’s behalf. However, this is not necessary, because s can derive the authenticity

of the message triggered by a block B from the signature of B, i.e., B.σ. So

instead of signing individual messages, si can give a batch signature B.σ for

authenticating every message materialized through B. Finally, s interprets

protocol instances with labels `j in parallel in line 7 of Algorithm 7. While

traversing the block DAG, s uses the structure of the block DAG to interpret

requests and messages for every `j. Now, the same block giving rise to a request

in process instance `j may materialize a message in process instance `′j. The

(small) price to pay is the increase of block size by references to predecessor

blocks, i.e., B.preds.

4.3 Using the Framework

The protocol shim(P) in Algorithm 8 is responsible for the choreography of the

external user of P , the gossip protocol in Algorithm 6, and the interpret protocol

in Algorithm 7. Therefore, the server s executing shim(P) in Algorithm 8 keeps

track of two synchronized data structures (i) a buffer of labels and requests

rqsts in line 2, and (ii) and the block DAG G in line 3. By calling rqsts.put(`, r),

s inserts (`, r) in rqsts, and by calling rqsts.get(), s gets and removes a suitable

number of requests (`1, r1), . . . , (`n, rn) from rqsts. To insert a block B in G,

s calls G.insert(B) from Definition 4.1.4. We tacitly assume these operations
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are atomic. When starting an instance of gossip and interpret in line 4 and 5, s

passes in references to theses shared data structures. When the external user

of protocol P requests r ∈ Rqsts for ` ∈ L from s via the request request(`, r)

to shim(P) then s inserts (`, r) in rqsts in lines 6–7. By executing gossip, s

writes (`, r) in B in Algorithm 6 line 15, and as eventually B ∈ G, r will be

requested from protocol instance PIs[`] when s executes line 6 in Algorithm 7:

Lemma 4.3.1 For a correct server s executing shim(P), if some request(r, `)

is requested from s, then r is requested in P.

Proof 4.3.1 By executing shim(P), a correct server s inserts (`, r) in rqsts in

line 6–7 of Algorithm 8. Then executing gossip(s,G, rqsts), s will eventually

disseminate a block B with B.n = s and (`, r) ∈ B.rs in line 15 of Algo-

rithm 6 and B ∈ G after triggering disseminate in lines 10–11 of Algorithm 8.

Now, executing interpret(G,P), s for B ∈ G will call B.PIs[`].rs in line 6 in

Algorithm 7.

On the other hand, when interpret indicates i ∈ Inds, for the interpretation

of P for itself, i.e., s = s′, then s indicates to the user of P in line 8–9 of

Algorithm 8:

Lemma 4.3.2 For a correct server s executing shim(P), if P indicates i ∈

IndsP for s, then shim(P) triggers indicate(`, i).

Proof 4.3.2 By assumption a correct s indicates i for ` and hence indicates

in interpret(G,P) lines 13–14 of Algorithm 7. Then, by executing shim(P), as

s = s′ indicate(`, i ∈ IndsP) is triggered in lines 8–9 of Algorithm 8.

For s to only indicate when s = s′ might be an over-approximation: s

trusts s’s interpretation of P as s is correct for s. We believe this restriction

can be lifted. Finally, as promised in Section 4.1, in lines 10–11 s repeatedly

requests disseminate from gossip to disseminate B. Within the control of s,

the time between calls to disseminate can be adapted to meet the network

assumptions of P and can be enforced e.g., by an internal timer, the block’s
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payload, or when s falls n blocks behind. For our proofs we only need to

guarantee that a correct s will eventually request disseminate.

Example 4.3.1 Assume a server s running Algorithm 8 instantiated with P

as byzantine reliable broadcast in Algorithm 1 and a client which requests r =

broadcast(42) from s. Now, s passes r to gossip (lines 6–7) and once the

interpretation of G indicates for s, s indicates to the client (lines 8–9).

Following [23], a protocol P implements an interface I and has proper-

ties P, which are shown to hold for P . For any property, which holds for a

protocol P and where the proof of the property relies on the reliable point-to-

point abstraction in Lemma 4.2.11, P holds for shim(P). Again following [23],

these are the properties of any algorithm that uses the reliable point-to-point

link abstraction.

Taking together what we have established for gossip in Section 4.1, i.e.

that correct servers will eventually share a joint block DAG, and that interpret

gives a point-to-point link between them in Section 4.2, for shim(P) the fol-

lowing holds:

Theorem 4.3.1 For a correct server s and a deterministic protocol P, if P

is an implementation of (i) an interface I with requests RqstsP and indica-

tions IndsP using the reliable point-to-point link abstraction such that (ii) a

property P holds, then shim(P) in Algorithm 8 implements (i) I such that (ii) P

holds.

Proof 4.3.3 By Lemma 4.3.1 and Lemma 4.3.2, (i) shim(P) implements the

interface I of RqstsP and IndsP . For (ii), by assumption P holds for P using

a reliable point-to-point link abstraction. By Lemma 4.2.11 s.interpret(G,P)

implements a reliable point-to-point link. As Algorithm 7 treats P as a black-

box every B.PIs[`] holds an execution of P. Assume this execution violates P,

but then an execution of P violates P which contradicts the assumption that P

holds for P.
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Our proof relies on a point-to-point link between two correct servers and

thus we can translate the argument of all safety and liveness properties, for

which their reasoning relies on the point-to-point link abstraction, to our block

DAG framework. Because we provide an abstraction, we cannot directly trans-

late implementation-level properties measuring performance such as latency or

throughput. They rely on the concrete implementation. Also, as discussed in

Section 4.2, properties related to signatures do not directly translate, because

blocks—not messages—are (batch-)signed. Finally, we note that in our setting

the complexity measure of calls to the reliable point-to-point link abstraction

is slightly misleading, because we are optimising the messages transmitted by

the point-to-point link abstraction.

In the remainder of this chapter, we will sketch how a user may use

the block DAG framework. Our example for P is byzantine reliable broad-

cast (BRB). Given an implementation of byzantine reliable broadcast after [23,

Module 3.12, p. 117], e.g., Algorithm 1: this is the P , which the user passes

to shim(P), i.e., in the block DAG framework P is fixed to an implementation

of BRB. The request in BRB is broadcast(v) for a value v ∈ Vals, so RqstsP =

{broadcast(v) | v ∈ Vals}. For simplicity and generality, we assume that P—

not shim(P)—authenticates requests, i.e., requests are self-contained and can

be authenticated while simulating P (e.g., Algorithm 1 line 3). However, in an

implementation shim(P) may be employed to authenticate requests. On the

other hand, BRB indicates with deliver(v), so IndsP = {deliver(v) | v ∈ Vals}.

The messages sent in BRB are MP = {ECHO v, READY v | v ∈ Vals} where

sender and receiver are the s ∈ Srvrs running shim(P). When executing line 9

of interpret(G,P) in Algorithm 7, then receive(ECHO 42) is triggered, and re-

ceived ECHO 42 holds (e.g., in Algorithm 1 in line 6). As we assume P returns

messages immediately, e.g., when the simulation reaches send ECHO 42, then

ECHO 42 is returned immediately e.g., in line 8 of Algorithm 1. The inter-

face I is Rqsts = {broadcast(v) | v ∈ Vals} and Inds = {deliver(v) | v ∈ Vals}

The properties P of BRB—validity, no duplication, integrity, consistency, and
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s1

s2

B1

in = ∅
out = ECHO 42 to {s1, s2, s3, s4}

B2

B3

s3

B4

s4

B5

B6

in = ECHO 42 from {s1, s2, s3}
out = READY 42 to {s1, s2, s3, s4}

B7

B8

k1 k2 k3

in = ECHO 42 from {s1}
out = ECHO 42 to {s1, s2, s3, s4}

in = ECHO 42 from {s1}
out = ECHO 42 to {s1, s2, s3, s4}

in = ECHO 42 from {s1}
out = ECHO 42 to {s1, s2, s3, s4}

in = ECHO 42 from {s1}
out = ECHO 42 to {s1, s2, s3, s4}

in = ECHO 42 from {s1, s2, s3}
out = READY 42 to {s1, s2, s3, s4}

in = ECHO 42 from {s1, s2, s3}
out = READY 42 to {s1, s2, s3, s4}

Figure 4.5: The message buffers for (`1, broadcast(42)) ∈ B1.rs.

totality—are preserved.

Figure 4.5 shows a block DAG for an execution of shim(P) using byzan-

tine reliable broadcast. It further explicitly shows the in- and out-going mes-

sages from Ms[in, `1] and Ms[out, `1] for a protocol instance `1 and the request

broadcast(42) at block B1. None of these messages are ever actually sent over

the network—every server interpreting this block DAG can use interpret in Al-

gorithm 7 to replay an implementation of BRB and get the same picture. Fig-

ure 4.5 shows only the (unsent) messages for `1 and broadcast(42) in B1.rs, but

B1.rs may hold more requests such as broadcast(21) for `2, and all the messages

of all these requests could be materialized in the same manner—without any

messages, or even additional blocks, sent. Moreover, not only B1 holds such

requests—also B3 does. For example, B3.rs may contain broadcast(25) for `3.

Then, for `3 on B3 materializes out = ECHO 25 to s1, s2, s3, and again, without

sending any messages, for `3 on B6, B7, and B8 materializes in = ECHO 25 from

s2. This is, of course, the same for every Bi.

To recap, what makes interpreting P on a block DAG so attractive: sending

blocks instead of messages in a deterministic P results in a compression of

messages—up to their omission. And not only do these messages not have to

be sent, they also do not have to be signed. It suffices, that every server signs

their blocks. Finally, a single block sent is interpreted as messages for a large
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number of parallel protocol instances.
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Chapter 5

Background: Programs

In this chapter I first give the necessary background on smart contracts and

in the next section focus on the Ethereum virtual machine. Then I give a brief

introduction into SMT solvers and superoptimisation.

5.1 Smart Contracts

Bitcoin has a restricted scripting language to manipulate the state of the

blockchain. In 2013 the restriction on the language to manipulate state was

lifted: the Ethereum blockchain1 [22] introduced a (quasi) Turing-complete

programming language to write programs to own, transfer, or even destroy

cryptocurrency—so called smart contracts. Now most blockchains come with

a smart contract language: Facebook’s diem blockchain [77] with the Move [107]

language from 2019, or the Tezos blockchain [47] with Michelson [61].

Programs deployed and executed on the blockchain are called smart con-

tracts. Most of the terminology used here is with respect to the Ethereum

blockchain, but concepts are similar for other blockchains. The source code of

a smart contract resides on the blockchain and is thus public and immutable.

When a smart contract is called, all servers execute the smart contract usually

on a Virtual Machine, such as the Ethereum virtual machine (EVM) speci-

fied in the “yellow paper” [111, 112]. Several implementations of the EVM

are available,2 e.g., a Go implementation geth3 by the Ethereum foundation.

1cf. ethereum.org
2https://eth.wiki/concepts/evm/implementations
3https://geth.ethereum.org/

https://ethereum.org/en/
https://eth.wiki/concepts/evm/implementations
https://geth.ethereum.org/
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The servers execute the smart contract for a fee, usually called gas, which

fuels the execution and depends on: (i) the program; every instruction comes

with a gas cost4, (ii) the current state, and (iii) the arguments to the call.

The price of gas varies depending e.g., on the utilisation of the network, but

is paid up-front. Unused gas is refunded, but if the caller has not provided

enough gas, the state is reverted and the money is lost. Usually, smart con-

tract languages are quasi Turing-complete programming languages. We say

quasi Turing-complete because paying for execution circumvents the halting

problem [108]: every execution terminates.

Smart contracts are often written in a high-level language and compiled to

low-level bytecode which gets deployed on the blockchain. In Ethereum, smart

contracts could be written e.g., in the object-oriented Solidity5 and with solc

compiled to EVM bytecode (see Figure 7.1 for example code).

Other blockchains come with their own languages. The designated lan-

guage for the diem blockchain is the Move programming language compiling

to Move bytecode [107]. Move is a formally specified, typed language. The

Move virtual machine is also stack-based, but unlike the EVM it comes with

typed locals to move elements on the stack. The Tezos blockchain supports the

Michelson [61] bytecode language—again a typed language with a formal spec-

ification. Also the Michelson virtual machine relies on a stack—but a typed

stack with integers, strings, bytes, and tags.

5.2 Ethereum Virtual Machine

The EVM as basis for Chapters 6–8 is specified in the Byzantium Version

e94ebda [111] of the yellow paper6. The main components of the state of the

EVM are: a stack, which holds words, i.e., bit vectors of size 256. The max-

imal stack size is 210. A stack can over- and underflow. Both lead the EVM

to enter an exceptional halting state. The EVM further has a volatile mem-

ory, which is a word-addressed byte array, and a persistent, key-value storage
4With the caveat that pricing of instructions is hard [114] leading to a possible attack [90].
5https://soliditylang.org/
6A newer version Petersburg Version 3e2c089 [112] is now available.

https://soliditylang.org/
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storing word-addressed words on the Ethereum blockchain. EVM bytecode di-

rectly corresponds to more human-friendly instructions, e.g. the EVM bytecode

6029600101 encodes the following sequence of instructions: PUSH 41 PUSH 1 ADD.

We call a finite sequence of instructions a program p and define the size |p| of a

program as the number of its instructions. Instructions manipulate the state.

For example, every instruction ι, takes δ(ι) words from the stack and adds

α(ι) words to the stack. Instructions can be classified into different categories.

Next we will give all instructions relevant in Chapter 6–8. From the Stop and

Arithmetic Operations we consider: bit-vector addition (ADD), multiplication

(MUL), subtraction (SUB), (signed) division (DIV/SDIV), (signed) modulo (MOD

/SMOD), a modulo addition and multiplication operation (ADDMOD/MULMOD). We

cannot fully consider EXP and SIGNEXTEND as we are lacking the support from

the SMT solver. However, we consider them as uninterpreted instructions—

leveraging the fact that they will always return the same result for the same

arguments. The STOP instruction, which halts the execution, changes the con-

trol flow and serves as a instruction to determine the boundaries of a basic

block. From the Comparison and Bitwise Logic Operations we consider: bit-

vector comparison (signed) less-than (LT/SLT), (signed) greater-than (GT/SGT),

equality (EQ), a check for zero (ISZERO), and bitwise AND, OR, XOR, NOT. Again,

we do not encode BYTE, but consider it as uninterpreted instruction, similar to

SHA3 (SHA3).

For instructions holding Environmental Information, which depend on the

runtime, we can encode some as uninterpreted instructions: ADDRESS, which

returns the address of the executing account, BALANCE, which returns the bal-

ance, ORIGIN, which returns the origination address, CALLER, which returns the

caller address, and CALLVALUE, CALLDATALOAD as well as CALLDATASIZE, which

return information about the input data, CODESIZE, which gives the size of the

code, GASPRICE, which gives the price of gas, EXTCODESIZE, which gives the size

of an account’s code, and RETURNDATASIZE giving the size of output data.

We cannot encode some of these instructions, as they have an outside
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effect on a state of the EVM we do not model. Hence we need to honour

the order of these instructions. These are copy instructions: CALLDATACOPY,

CODECOPY, EXTCODECOPY, RETURNDATACOPY.

For instructions holding Block Information, again we can encode all of

them as uninterpreted instructions: BLOCKHASH, which gives the hash of a block,

COINBASE, which gives an address, the TIMESTAMP of a block and its NUMBER,

DIFFICULTY, and GASLIMIT.

The instructions for Stack, Memory, Storage, and Flow Operations we

encode are: POP, which pops an element from stack. For the instructions to

encode memory we treat the loading of a value (MLOAD) as an uninterpreted

instruction, but we do not encode instructions to store values (MSTORE). For

storage we can encode both: loading (SLOAD) and storing (SSTORE). Finally,

the jump instructions to alter control flow (JUMP, JUMPI, JUMPDEST) are used

to determine basic blocks. We also encode the program counter (PC), the

amount of available gas (GAS) and the size of memory (MSIZE) as uninterpreted

instructions.

The instructions performing Push Operations for pushing 1 to 32 bit-words

(PUSH) on the stack are all encoded in our work, as well as the Duplication

Operation for duplicating the first (DUP1) up to the 16th element (DUP16) of the

stack, and the Exchange Operations to swap the first and the second (SWAP1)

up to the first and the 17th element (SWAP16).

Finally, as the Logging Operations to log the state (LOG1 to LOG4), as well

as all the System operations have an outside effect, we cannot encode them.

These system operations can create a new account with code (CREATE), call an

account (CALL), possibly with another account’s code (CALLCODE, DELEGATECALL

and STATICCALL), may return data (RETURN), reverting the execution (REVERT

), be invalid (INVALID), or self-destruct (SELFDESTRUCT). We leave all these

instructions at their original position in the code.

Note that for Chapter 7 we are exclusively focusing on the instructions

concerning the stack: PUSH, POP, DUP, and SWAP.
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5.3 Satisfiability Modulo Theories

If a problem can be expressed as a first-order logic formula with equality—

possibly in combination with theories, preferably decidable theories [60]—then

this problem could be solved by a Satisfiability Modulo Theories (SMT) solver.

Theories relevant for Chapter 6 to 8 are the theory of bit-vectors, theory of

linear integer arithmetic, and the theory of uninterpreted functions. Once

the problem is suitably expressed, an off-the-shelf SMT solver as a black-box

can find a solution (given enough time if decidable). There are many SMT

solvers7; two prominent open-source one’s are: Microsoft research’s Z3 [32],

and CVC4 [15]. Moreover, a strong SMT community has formed with a yearly

competition8 [13] on collected benchmarks, and defined SMT-LIB standards

(current version: 2.6 [14]). Finally, consider expressing the problem not as

a satisfiability problem—but as an optimisation problem, trying to satisfy as

many clauses as possible. Here again, a solution can be found with an off-the-

shelf SMT solver such as the one’s we leverage in Chapter 7: Z3, MathSAT [28],

or Barcelogic [16].

5.4 Superoptimisation

Superoptimisation is the “look for the smallest program” [74]: given a source

program p superoptimisation tries to generate a target program p′—possibly

in a different language—such that (i) p′ is equivalent to p, and (ii) the cost of

p′ is minimal with respect to a given cost function C.

Basic Superoptimisation. A standard approach to superoptimisation [74,

50, 101, 106] is shown in Algorithm 9. We call this approach basic super-

optimisation (BasicSO). The input is a program p to superoptimise and a

cost function C. Here, we search through all possible candidate instruction

sequences in increasing cost (line 15 and 21). With a constraint solver, e.g.,

an SMT solver, we check whether a candidate correctly implements the source

program: we encode this as a request χ to the solver in line 16. If the solver
7A list is maintained at http://smtlib.cs.uiowa.edu/solvers.shtml.
8The 15th SMT-COMP ran in 2020.

http://smtlib.cs.uiowa.edu/solvers.shtml
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Algorithm 9: Basic superoptimisation.
12 Function BasicSO(p, C) is
13 n := 0
14 while true do
15 forall p′ ∈ {p′ | C(p′) = n} do
16 χ := EncodeBso(p, p′)
17 if Satisfiable(χ) then
18 m := GetModel(χ)
19 p′ := DecodeBso(m)
20 return p′

21 n := n+ 1

Algorithm 10: Unbounded superoptimisation.
22 Function UnboundedSO(p, C) is
23 p′ := p
24 χ := EncodeUso(p′) ∧Bound(p′, C)
25 while Satisfiable(χ) do
26 m := GetModel(χ)
27 p′ := DecodeUso(m)
28 χ := χ ∧Bound(p′, C)
29 return p′

returns yes, i.e., our request to the solver is Satisfiable(χ) in line 17, then the

candidate program correctly implements the source program and we return this

candidate as solution in line 20. However, with increasing cost of the candi-

date programs, the search space dramatically increases. Consider for example

an instruction loading an immediate argument: we have to check all possible

immediate arguments, i.e., for 32 bit-vector we have to check 232 possibilities.

To deal with this explosion one idea is to move some of the search to the solver

by using templates [50, 106]. Templates leave holes in the candidate program,

that the solver must then fill. Thus, if our encoding is satisfiable, we obtain a

model in line 18, indicating how we can fill the holes by decoding the provided

model to obtain the final target program in line 19.

Unbounded Superoptimisation. The idea of templates is pushed further in

unbounded superoptimisation [56, 55]. Instead of searching through candidate
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programs and calling the SMT solver on them, it shifts the search into the solver,

i.e., the encoding expresses all candidate instruction sequences of any length

that correctly implement the source program. This approach (UnboundedSO)

is shown in Algorithm 10. From BasicSO the request to our solver changes to:

is there a program implementing the source program p within a bound given

by the original program (line 24)? If the solver returns yes, i.e., our request

to the solver is Satisfiable(χ) in line 25, then there is an instruction sequence

that correctly implements the source program. Again, this target program

is reconstructed from the model in lines 26 and 27. Now p′ holds a correct,

but possibly non-optimal, solution. Thus, to eventually obtain the optimal

solution, we add the new found bound to the encoding χ in line 28 and iterate

until the solver cannot find a program with a smaller bound any more and the

solver returns no for Satisfiable(χ).



Chapter 6

Blockchain Superoptimiser

In this chapter we leverage formal reasoning about smart contracts to reduce

the monetary fees of their execution while still guaranteeing correct execu-

tion [Hb].

Example 6.0.1 Consider the expression 3+(0−x) in Figure 6.1, which corre-

sponds to the program PUSH 0 SUB PUSH 3 ADD. This program takes an argument

x from the stack to compute the expression above. However, clearly one can

save the ADD instruction and instead compute 3− x, i.e., optimise the program

to PUSH 3 SUB. The first program costs 12 g to execute on the EVM, while the

second costs only 6 g.

We built a tool that automatically finds this optimisation and similar

others that are missed by state-of-the-art smart contract compilers: the EVM

bytecode superoptimiser ebso. To find these optimisations, ebso implements

superoptimisation. Superoptimisation is often considered too slow to use dur-

ing software development except for special circumstances. We argue that

compiling smart contracts is such a circumstance. Since bytecode, once it has

been deployed to the blockchain, cannot change again, spending extra time

optimising a program that may be called many times, might well be worth it:

the clear cost model of gas makes it easy to define optimality.1

1Of course setting the gas price of individual instructions, such that it accurately
reflects the computational cost is hard, and has been a problem in the past see e.g.
news.ycombinator.com/item?id=12557372.

https://news.ycombinator.com/item?id=12557372
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x

x

3 + (0− x)

3− x

≡

EVM executes for 12 g
PUSH 0 SUB PUSH 3 ADD

EVM executes for 6 g
PUSH 3 SUB

Figure 6.1: Overview over ebso.

6.1 Encoding

The main ingredients of superoptimisation in Algorithm 9 and 10 are Encode-

Bso/Uso producing the SMT encoding, and DecodeBso/Uso reconstructing

the target program from a model. We present our encodings for the semantics

of EVM bytecode and start by encoding three parts of the EVM execution state:

(i) the stack, (ii) gas consumption, and (iii) whether the execution is in an

exceptional halting state. We model the stack as an uninterpreted function

together with a counter, which points to the next free position on the stack.

Definition 6.1.1 A state σ = 〈S, c, hlt, g〉 consists of

(i) a function S(~x, j, n) that, after the program has executed j instructions

on input variables from ~x returns the word from position n in the stack,

(ii) a function c(j) that returns the number of words on the stack after exe-

cuting j instructions. Hence S(~x, j, c(j)−1) returns the top of the stack.

(iii) a function hlt(j) that returns true (>) if exceptional halting has occurred

after executing j instructions, and false (⊥) otherwise.

(iv) a function g(~x, j) that returns the amount of gas consumed after executing

j instructions.

Here the functions in σ represent all execution states of a program, indexed

by variable j.
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Example 6.1.1 Symbolically executing the program PUSH 41 PUSH 1 ADD using

our representation above we have

g(0) = 0 g(1) = 3 g(2) = 6 g(3) = 9

c(0) = 0 c(1) = 1 c(2) = 2 c(3) = 1

S(1, 0) = 41 S(2, 0) = 41 S(2, 1) = 1 S(3, 0) = 42

and hlt(0) = hlt(1) = hlt(2) = hlt(3) = ⊥.

Note that this program does not consume any words that were already on

the stack. This is not the case in general. For instance we might be dealing

with the body of a function, which takes its arguments from the stack. Hence

we need to ensure that at the beginning of the execution sufficiently many

words are on the stack. To this end we first compute the depth δ̂(p) of the

program p, i.e., the number of words a program p consumes. Then we take

variables x0, . . . , xδ̂(p)−1 that represent the input to the program and initialize

our functions accordingly.

Definition 6.1.2 For a program with δ̂(p) = d we initialize the state σ using

gσ(0) = 0 ∧ hltσ(0) = ⊥ ∧ cσ(0) = d ∧
∧

06`<d
Sσ(~x, 0, `) = x`

For instance, for the program consisting of the single instruction ADD we

set c(0) = 2, and S({x0, x1}, 0, 0) = x0 and S({x0, x1}, 0, 1) = x1. We then

have S({x0, x1}, 1, 0) = x1 + x2.

To encode the effect of EVM instructions we build SMT formulas to capture

their operational semantics. That is, for an instruction ι and a state σ we give

a formula τ(ι, σ, j) that defines the effect on state σ if ι is the j-th instruction

that is executed. Since large parts of these formulas are similar for every

instruction and only depend on δ and α we build them from smaller building

blocks.
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Definition 6.1.3 For an instruction ι and state σ we define:

τg(ι, σ, j) ≡ gσ(~x, j + 1) = gσ(~x, j) + C(σ, j, ι)

τc(ι, σ, j) ≡ cσ(j + 1) = cσ(j) + α(ι)− δ(ι)

τpres(ι, σ, j) ≡ ∀n.n < cσ(j)− δ(ι)→ Sσ(~x, j + 1, n) = Sσ(~x, j, n)

τhlt(ι, σ, j) ≡ hltσ(j + 1) = hltσ(j) ∨ cσ(j)− δ(ι) < 0 ∨ cσ(j)− δ(ι) + α(ι) > 210

Here C(σ, j, ι) is the gas cost of executing instruction ι on state σ after j steps.

The formula τg adds the cost of ι to the gas cost incurred so far. The formula τc

updates the counter for the number of words on the stack according to δ and

α. The formula τpres expresses that all words on the stack below cσ(j)−δ(ι) are

preserved. Finally, τhlt captures that exceptions relevant to the stack can occur

through either an underflow or an overflow, and that once it has occurred an

exceptional halt state persists. For now the only other component we need is

how the instructions affect the stack S, i.e., a formula τS(ι, σ, j). Here we only

give an example and refer to our implementation or the yellow paper [111] for

details. We have

τS(ADD, σ, j) ≡ Sσ(~x, j + 1, cσ(j + 1)− 1)

= Sσ(~x, j, cσ(j)− 1) + Sσ(~x, j, cσ(j)− 2)

Finally these formulas yield an encoding for the semantics of an instruc-

tion.

Definition 6.1.4 For an instruction ι and state σ we define

τ(ι, σ, j) ≡ τS(ι, σ, j) ∧ τc(ι, σ, j) ∧ τg(ι, σ, j) ∧ τhlt(ι, σ, j) ∧ τpres(ι, σ, j)

Then to encode the semantics of a program p all we need to do is to apply

τ to the instructions of p.

Definition 6.1.5 For a program p = ι0 · · · ιn we set τ(p, σ) ≡ ∧06j6n τ(ιj, σ, j).
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Before building an encoding for superoptimisation we consider another

aspect of the EVM for our state representation: storage and memory. The

gas cost for storing words depends on the words that are currently stored.

Similarly, the cost for using memory depends on the number of bytes currently

used. This is why the cost of an instruction C(σ, j, ι) depends on the state and

the function gσ accumulating gas cost depends on ~x.

To add support for storage and memory to our encoding there are two

natural choices: the theory of arrays or an Ackermann encoding. However,

since we have not used arrays so far, they would require the solver to deal

with an additional theory. For an Ackermann encoding we only need unin-

terpreted functions, which we have used already. Hence, to represent storage

in our encoding we extend states with an uninterpreted function str(~x, j, k),

which returns the word at key k after the program has executed j instructions.

Similarly to how we set up the initial stack we need to deal with the values

held by the storage before the program is executed. Thus, to initialize str we

introduce fresh variables to represent the initial contents of the storage. More

precisely, for all SLOAD and SSTORE instructions occurring at positions j1, . . . , j`

in the source program, we introduce fresh variables s1, . . . , s` and add them to

~x. Then for a state σ we initialize strσ by adding the following conjunct to the

initialization constraint from Definition 6.1.2:

∀w. strσ(~x, 0, w) = ite(w = aj1 , s1, ite(w = aj2 , s2, . . . , ite(w = aj` , s`, w⊥)))

where aj = Sσ(~x, j, c(j) − 1) and w⊥ is the default value for words in the

storage. The effect of the two storage instructions SLOAD and SSTORE can then

be encoded as follows:

τS(SLOAD, σ, j) ≡ Sσ(~x, j + 1, cσ(j + 1)− 1) = str(~x, j,Sσ(~x, j, cσ(j)− 1))

τstr(SSTORE, σ, j) ≡ ∀w. strσ(~x, j + 1, w) =

ite(w = Sσ(~x, j, cσ(j)− 1),Sσ(~x, j, cσ(j)− 2), strσ(~x, j, w))
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Moreover all instructions except SSTORE preserve the storage, that is, for ι 6=

SSTORE we add the following conjunct to τpres(ι, σ, j): ∀w. strσ(~x, j + 1, w) =

strσ(~x, j, w).

To encode memory a similar strategy is an obvious way to go. However,

we first want to evaluate the solver’s performance on the encodings obtained

when using stack and storage. Since the solver already struggled, due to the

size of the programs and the number of universally quantified variables, see

Section 6.3, we have not added an encoding of memory.

Finally, to use our encoding for superoptimisation we need an encoding

of equality for two states after a certain number of instructions. Either to

ensure that two programs are equivalent (they start and end in equal states)

or different (they start in equal states, but end in different ones). The following

formula captures this constraint.

Definition 6.1.6 For states σ1 and σ2 and program locations j1 and j2 we

define

ε(σ1, σ2, j1, j2) ≡ cσ1(j1) = cσ2(j2) ∧ hltσ1(j1) = hltσ2(j2)

∧ ∀n.n < cσ1(j1)→ Sσ1(~x, j1, n) = Sσ2(~x, j2, n)

∧ ∀w.strσ1(~x, j1, w) = strσ2(~x, j2, w)

Since we aim to improve gas consumption, we do not demand equality for g.

We now have all ingredients needed to implement basic superoptimisa-

tion: simply enumerate all possible programs ordered by gas cost and use the

encodings to check equivalence. However, since already for one PUSH there are

2256 possible arguments, this will not produce results in a reasonable amount

of time. Hence we use templates as described in Section 5.4. We introduce an

uninterpreted function a(j) that maps a program location j to a word, which

will be the argument of PUSH. The solver then fills these templates and we

can get the values from the model. This is a step forward, but since we have

80 encoded instructions, enumerating all permutations still yields too large a
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search space. Hence we use an encoding similar to the CEGIS algorithm [50].

Given a collection of instructions, we formulate a constraint representing all

possible permutations of these instructions. It is satisfiable if there is a way to

connect the instructions into a target program that is equivalent to the source

program. The order of the instructions can again be reconstructed from the

model provided by the solver. More precisely given a source program p and a

list of candidate instructions ι1, . . . , ιn, EncodeBso from Algorithm 9 takes

variables j1, . . . , jn and two states σ and σ′ and builds the following formula

∀~x. ε(σ, σ′, 0, 0) ∧ ε(σ, σ′, |p|, n) ∧ τ(p, σ)

∧
∧

16`6n
τ(ι`, σ′, j`) ∧

∧
16`<k6n

j` 6= jk ∧
∧

16`6n
j` > 0 ∧ j` < n

Here the first line encodes the source program, and says that the start and

final states of the two programs are equivalent. The second line encodes the

effect of the candidate instructions and enforces that they are all used in some

order. If this formula is satisfiable we can simply get the ji from the model and

reorder the candidate instructions accordingly to obtain the target program.

Unbounded superoptimisation shifts even more of the search into the

solver, encoding the search space of all possible programs. To this end we

take a variable n, which represents the number of instructions in the target

program and an uninterpreted function instr(j), which acts as a template, re-

turning the instruction to be used at location j. Then, given a set of candidate

instructions the formula to encode the search can be built as follows:

Definition 6.1.7 Given a set of instructions CI the formula ρ(σ, n) is

∀j. j > 0 ∧ j < n→
∧
ι∈CI

instr(j) = ι→ τ(ι, σ, j) ∧
∨
ι∈CI

instr(j) = ι

Finally, the constraint produced by EncodeUso from Algorithm 10 is

∀~x. τ(p, σ) ∧ ρ(σ′, n) ∧ ε(σ, σ′, 0, 0) ∧ ε(σ, σ′, |p|, n) ∧ gσ(~x, |p|) > gσ′(~x, n).
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During our experiments we observed that the solver struggles to show that

the formula is unsatisfiable when p is already optimal. To help in these cases

we additionally add a bound on n: since the cheapest EVM instruction has gas

cost 1, the target program cannot use more instructions than the gas cost of

p, i.e., we add n 6 gσ(~x, |p|).

In our application domain there are many instructions that fetch informa-

tion from the outside world. For instance, ADDRESS gets the Ethereum address

of the account currently executing the bytecode of this smart contract. Since

it is not possible to know these values at compile time we cannot encode their

full semantics. However, we would still like to take advantage of structural

optimisations where these instructions are involved, e.g., via DUP and SWAP.

Example 6.1.2 Consider the program ADDRESS DUP1. The same effect can be

achieved by simply calling ADDRESS ADDRESS. Duplicating words on the stack,

if they are used multiple times, is an intuitive approach. However, because

executing ADDRESS costs 2 g and DUP1 costs 3 g, perhaps unexpectedly, the second

program is cheaper.

To find such optimisations we need a way to encode ADDRESS and similar

instructions. For our purposes, these instructions have in common that they

put arbitrary but fixed words onto the stack. Analogous to uninterpreted

functions, we call them uninterpreted instructions and collect them in the set

UI. To represent their output we use universally quantified variables—similar

to input variables. To encode the effect uninterpreted instructions have on the

stack, i.e., τS , we distinguish between constant and non-constant uninterpreted

instructions.

Let uic(p) be the set of constant uninterpreted instructions in p, i.e.

uic(p) = {ι ∈ p | ι ∈ UI ∧ δ(ι) = 0}. Then for uic(p) = {ι1, . . . , ιk} we take

variables uι1 , . . . , uιk and add them to ~x, and thus to the arguments of the state

function S. The formula τS can then use these variables to represent the un-

known word produced by the uninterpreted instruction, i.e., for ι ∈ uic(p) with

the corresponding variable uι in ~x, we set τS(ι, σ, j) ≡ Sσ(~x, j + 1, cσ(j)) = uι.
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For a non-constant instruction ι, such as BLOCKHASH or BALANCE, the word

put onto the stack by ι depends on the top δ(ι) words of the stack. We again

model this dependency using an uninterpreted function. That is, for every

non-constant uninterpreted instruction ι in the source program p, uin(p) =

{ι ∈ p | ι ∈ UI ∧ δ(ι) > 0}, we use an uninterpreted function fι. Conceptually,

we can think of fι as a read-only memory initialized with the values that the

calls to ι produce.

Example 6.1.3 The instruction BLOCKHASH gets the hash of a given block b.

Optimising the program PUSH b1 BLOCKHASH PUSH b2 BLOCKHASH depends on the

values b1 and b2. If b1 = b2 then the cheaper program PUSH b1 BLOCKHASH DUP1

yields the same state as the original program.

To capture this behaviour, we need to associate the arguments b1 and

b2 of BLOCKHASH with the two different results they may produce. As with

constant uninterpreted instructions, to model arbitrary but fixed results, we

add fresh variables to ~x. However, to account for different results produced

by ` invocations of ι in p we have to add ` variables. Let p be a program and

ι ∈ uin(p) a unary instruction which appears ` times at positions j1, . . . , j` in

p. For variables u1, . . . , u`, we initialize fι as follows:

∀w. fι(~x, w) = ite(w = aj1 , u1, ite(w = aj2 , u2, . . . , ite(w = aj` , u`, w⊥)))

where aj is the word on the stack after j instructions in p, that is aj =

Sσ(~x, j, c(j) − 1), and w⊥ is a default word. This approach straightforwardly

extends to instructions with more than one argument. Here we assume that

uninterpreted instructions put exactly one word onto the stack, i.e., α(ι) = 1

for all ι ∈ UI. This assumption is easily verified for the EVM: the only instruc-

tions with α(ι) > 1 are DUP and SWAP. Finally we set the effect a non-constant

uninterpreted instruction ι with associated function fι has on the stack:

τS(ι, σ, j) ≡ Sσ(~x, j + 1, cσ(j + 1)− 1) = fι(~x,Sσ(~x, j, cσ(j)− 1))
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For some uninterpreted instructions there might a be way to partially

encode their semantics. The instruction BLOCKHASH returns 0 if it is called for a

block number greater than the current block number. While the current block

number is not known at compile time, the instruction NUMBER does return it.

Encoding this interplay between BLOCKHASH and NUMBER could potentially be

exploited for finding optimisations.

6.2 Implementation

We implemented basic and unbounded superoptimisation in our tool ebso avail-

able under the Apache-2.0 license: github.com/juliannagele/ebso. The en-

coding employed by ebso uses several background theories: (i) uninterpreted

functions (UF) for encoding the state of the EVM, for templates, and for encod-

ing uninterpreted instructions, (ii) bit vector arithmetic (BV) for operations on

words, (iii) quantifiers for initial words on the stack and in the storage, and

the results of uninterpreted instructions, and (iv) linear integer arithmetic

(LIA) for the instruction counter. Hence following the SMT-LIB classifica-

tion2 ebso’s constraints fall under the logic UFBVLIA. As SMT solver we chose

Z3 [32], version 4.7.1 which we call with default configurations. In particular,

Z3 performed well for the theory of quantified bit vectors and uninterpreted

functions in the last SMT competition (albeit non-competing).3

The aim of our implementation is to provide a prototype without rely-

ing on heavy engineering and optimisations such as exploiting parallelism or

tweaking Z3 strategies. However, without any optimisation, for the full word

size of the EVM—256 bit—ebso did not handle the simple program PUSH 0 ADD

POP within a reasonable amount of time. Thus we need techniques to make

ebso viable. By investigating the models generated by Z3 run with the default

configuration, we believe that the problem lies with the leading universally

quantified variables. And we have plenty of them: for the input on the stack,

for the storage, and for uninterpreted instructions. By reducing the word size

2smtlib.cs.uiowa.edu/logics.shtml
3smt-comp.github.io/2019/results/ufbv-single-query

https://github.com/juliannagele/ebso
http://smtlib.cs.uiowa.edu/logics.shtml
https://smt-comp.github.io/2019/results/ufbv-single-query
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to a small k, we can reduce the search space for universally quantified variables

from 2256 to some significantly smaller 2k. Still then we need to check any tar-

get program found with a smaller word size. To give an example: the program

PUSH 0 SUB PUSH 3 ADD from Example 6.0.1 optimises to NOT for word size 2 bit,

because then the binary representation of 3 is all ones. When using word size

256 bit this optimisation is not correct. To ensure that the target program has

the same semantics for word size 256 bit, we use translation validation: we ask

the solver to find inputs, which distinguish the source and target programs,

i.e., where both programs start in equivalent states, but their final state is

different. Using our existing machinery this formula is easy to build:4

Definition 6.2.1 Two programs p and p′ are equivalent if ν(p, p′, σ, σ′) ≡

∃~x, τ(p, σ) ∧ τ(p′, σ′) ∧ ε(σ, σ′, 0, 0) ∧ ¬ε(σ, σ′, |p|, |p′|) is unsatisfiable. Other-

wise, p and p′ are different, and the values for the variables in ~x from the

model are a corresponding witness.

A subtle problem remains: how can we represent the program PUSH 224981

with only k bit? Our solution is to replace arguments a1, . . . , am of PUSH

where ai > 2k with fresh, universally quantified variables c1, . . . , cm. If a

target program is found, we replace ci by the original value ai, and check with

translation validation whether this target program is correct. A drawback of

this approach is that we might lose potential optimisations.

Example 6.2.1 The program PUSH 0b111...111 AND optimises to the empty pro-

gram. However, abstracting the argument of PUSH translates the program to

PUSH ci AND, which does not allow the same optimisation.

Like many compiler optimisations, ebso optimises basic blocks. Therefore

we split EVM bytecode along instructions that change the control flow, e.g.,

JUMPI, or SELFDESTRUCT. Similarly we further split basic blocks into (ebso)

blocks so that they contain only encoded instructions. Instructions, which
4This approach also allows for other over-approximations. For instance, we tried using

integers instead of bit vectors, which performed worse.
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are not encoded, or encodable, include instructions that write to memory, e.g.

MSTORE, or the log instructions LOG.

Next we give a conjecture which would need to be proved to assure correct-

ness. To formally proof this conjecture, we would need to introduce and model

the whole state of the EVM and cannot restrict ourselves to modelling only the

stack and storage as well as only a subset of the instructions. This work is

exploratory to determine the value of the approach—before spending the effort

of formalisation. Several formal models of the EVM could serve as basis for this

proof: Hirai [54] used the meta-tool Lem [83] to formalise the semantics of the

EVM. This formalisation was extended by Amani et al. [8] by a program logic

using the interactive proof assistant Isabelle/HOL to provide an approach to the

verification of Ethereum smart contracts. Another formalisation of the EVM

semantics by Hildenbrandt et al. [53] uses the K-framework [95], a rewriting-

based framework for defining programming language design and semantics.

Any of these formalisations could be used as the basis of the proof of:

Conjecture 6.2.1 If program p superoptimises to program t then in any pro-

gram we can replace p by t without changing the semantic of the program.

Proof Idea 6.2.1 We would show the statement by induction on the program

context (c1, c2) of the program c1pc2. By assumption, the statement holds for

the base case ([ ], [ ]). For the step case (ιc1, c2), we observe that every in-

struction ι is deterministic, i.e., executing ι starting from a state σ leads to a

deterministic state σ′. By induction hypothesis, executing c1pc2 and c1tc2 from

a state σ′ leads to the same state σ′′, and therefore we can replace ιc1pc2 by

ιc1tc2. We can reason analogously for (c1, c2ι).

The proof idea gives two key insights for the proof. For one, we require

every instruction to be deterministic—which is the case for the EVM. For two,

we require that the context of the part of the state which is not modelled, as

well as the remaining code, i.e. through reflection, does not change through

the instruction and no side-effects occur. We assure this by restricting to
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instructions which only touch the modelled state according to the yellow pa-

per [111] (cf. Section 5.2, e.g., the stack with SWAP or ADD, and the storage with

SSTORE) and respect the order of instructions touching the context (e.g., LOG).

However, without introducing the whole state, we cannot formally show this

non-interference.

6.3 Evaluation

We evaluated ebso on two real-word data sets: (i) optimising an already highly

optimised data set in Section 6.3, and (ii) a large-scale data set from the

Ethereum blockchain to compare basic and unbounded superoptimisation in

Section 6.3. We use ebso to extract ebso blocks from our data sets. From the

extracted blocks (i) we remove duplicate blocks, and (ii) we remove blocks

which are only different in the arguments of PUSH by abstracting to word size

4 bit. We run both evaluations on a cluster [58] consisting of nodes running

Intel Xeon E5645 processors at 2.40 GHz, with one core and 1 GiB of memory

per instance.

We successfully validated all optimisations found by ebso by running a

reference implementation of the EVM on pseudo-random input. Therefore, we

run the bytecode of the original input block and the optimised bytecode to

observe that both produce the same final state. The EVM implementation we

use is go-ethereum5 version 1.8.23.

Optimise the Optimised. This evaluation tests ebso against human intelli-

gence. Underlying our data set are 200 Solidity contracts (GGraw) we collected

from the 1st Gas Golfing Contest. We did not join the contest, but we used the

contracts written by the winners to see whether we can still find optimisations

in these highly optimised contracts. 6 In that contest competitors had to write

the most gas-efficient Solidity code for five given challenges: (i) integer sorting,

(ii) implementing an interpreter, (iii) hex decoding, (iv) string searching, and

(v) removing duplicate elements. Every challenge had two categories: stan-

5github.com/ethereum/go-ethereum
6g.solidity.cc

https://github.com/ethereum/go-ethereum
https://g.solidity.cc/
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# %
optimised (optimal) 19 (10) 0.69 % (0.36 %)

proved optimal 481 17.54 %
time-out (trans. val. failed) 2243 (196) 81.77 % (7.15 %)

Table 6.1: Aggregated results of running ebso on GG.

dard and wild. For wild, any Solidity feature is allowed—even inlining EVM

bytecode. The winner of each track received 1 Ether. The Gas Golfing Con-

test provides a very high-quality data set: the EVM bytecode was not only

optimised by the solc compiler, but also by humans leveraging these compiler

optimisations and writing inline code themselves. To collect our data set GG,

we first compiled the Solidity contracts in GGraw with the same set-up as in

the contest.7 One contract in the wild category failed to compile and was thus

excluded from GGraw. From the generated .bin-runtime files, we extracted

our final data set GG of 2743 distinct blocks.

For this evaluation, we run ebso in its default mode: unbounded superop-

timisation. We run unbounded superoptimisation because, as can be seen in

Section 6.3, in our context unbounded superoptimisation outperformed basic

superoptimisation. As time-out for this challenging data set, we estimated 1 h

as reasonable. Table 6.1 shows the aggregated results of running ebso on GG.

In total, ebso optimises 19 blocks out of 2743, 10 of which are shown to be op-

timal. Moreover, ebso can prove for more than 17 % of blocks in GG that they

are already optimal. It is encouraging that ebso even finds optimisations in

this already highly optimised data set. The quality of the data set is supported

by the high percentage of blocks being proved as optimal by ebso. Next we

examine three found optimisations more closely. Our favourite optimisation

POP PUSH 1 SWAP1 POP PUSH 0 to SLT DUP1 EQ PUSH 0 witnesses that superoptimi-

sation can find unexpected results, and that unbounded superoptimisation can

stop with non-optimal results: SLT DUP1 EQ is, in fact, a round-about and op-

7Namely, $ solc --optimise --bin-runtime --optimise-runs 200 with solc com-
piler version 0.4.24 available at github.com/ethereum/solidity/tree/v0.4.24.

https://github.com/ethereum/solidity/tree/v0.4.24
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uso bso
# % # %

optimised (optimal) 943 (393) 1.54 % (0.64 %) 184 0.3 %
proved optimal 3882 6.34 % 348 0.57 %

time-out (trans. val. failed) 56 392 (1467) 92.12 % (2.4 %) 60 685 99.13 %

Table 6.2: Aggregated results of running ebso with uso and bso on EthBC.

timisable way to pop two words from the stack and push 1 on the stack. Some

optimisations follow clear patterns. The optimisations CALLVALUE DUP1 ISZERO

PUSH 81 to CALLVALUE CALLVALUE ISZERO PUSH 81 and CALLVALUE DUP1 ISZERO

PUSH 364 to CALLVALUE CALLVALUE ISZERO PUSH 364 are both based on the fact

that CALLVALUE is cheaper than DUP1. Finding such patterns and generalizing

them into peephole optimisation rules is the goal of Chapter 8. Unfortunately,

ebso hit a time-out in nearly 82 % of all cases, where we count a failed trans-

lation validation as part of the time-outs, since in that case ebso continues to

search for optimisations after increasing the word size.

Unbounded vs. Basic Superoptimisation. We compare unbounded and

basic superoptimisation, which we will abbreviate with uso and bso, respec-

tively, with a considerably larger data set. Fortunately, there is a rich source

of EVM bytecode accessible: contracts deployed on the Ethereum blockchain.

Assuming that contracts that are called more often are well constructed, we

queried the 2500 most called contracts8 using Google BigQuery.9 From them

we extract our data set EthBC of 61 217 distinct blocks. We estimated a cut-off

point of 15 min as reasonable. Due to the high volume, we only run the full

evaluation once.

Table 6.2 shows the aggregated results of running ebso on EthBC. Out of

61 217 blocks in EthBC, ebso finds 943 optimisations using uso out of which it

proves 393 to be optimal. Using bso 184 optimisations are found. Some blocks

were shown to be optimal by both approaches. Also, both approaches time
8up to block number 7 300 000 deployed on Mar-04-2019 01:22:15 AM +UTC
9cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-

smart-contract-analytics

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
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out in a majority of the cases: uso in more than 92 %, and bso in more than

99 %. Over all 61 217 blocks the total amount of gas saved for uso is 17 871 and

6903 for bso. For all blocks where an optimisation is found, the average gas

saving per block in uso is 29.63 %, and 46.1 % for bso. The higher average for

bso can be explained by (i) bso’s bias for smaller blocks, where relative savings

are naturally higher, and (ii) bso only providing optimal results, whereas uso

may find intermediate, non-optimal results. The optimisation with the largest

gain, is one which we did not necessarily expect to find in a deployed con-

tract: a redundant storage access. Storage is expensive, hence optimised for in

deployed contracts, but uso and bso both found PUSH 0 PUSH 4 SLOAD SUB PUSH

4 DUP2 SWAP1 SSTORE POP which optimises to the empty program—because the

program basically loads the value from key 4 only to store it back to that same

key. This optimisation saves at least 5220 g, but up to 20 220 g.

From Table 6.2 we see that on EthBC, uso outperforms bso by roughly

a factor of five on found optimisations; more than ten times as many blocks

are proved optimal by uso than by bso. As we expected, most optimisations

found by bso were also found by uso, but surprisingly, bso found 21 optimisa-

tions, on which uso failed. We found that nearly all of the 21 source programs

are fairly complicated, but have a short optimisation of two or three instruc-

tions. To pick an example, the block PUSH 0 PUSH 12 SLOAD LT ISZERO ISZERO

ISZERO PUSH 12250 is optimised to the relatively simple PUSH 1 PUSH 12250—a

candidate block, which will be tried early on in bso. Moreover, all 21 blocks

are cheap: costing less than 10 g. We believe unfortunate, non-deterministic

choices within the solver to be the reason they have not been found by uso.



Chapter 7

Synthesis using Max-SMT

In this chapter we expand on how we can leverage formal reasoning about smart

contracts to reduce the monetary fees of their execution [Hb] by addressing the

main shortfall of Chapter 6—lack of performance—by an improved encoding

and a shift to Max-SMT solvers. The experimental results of Chapter 6 confirm

the extreme computational demands of the technique: ebso times out in 92 %

of the blocks used in the evaluation. This is a severe limitation for the use

of the technique, and the problem of finding the optimal code for an EVM

block still remains very challenging. The complexity stems mainly from three

sources: first, the problem is expressed in the theory of bit-vector arithmetic

with bit-width size of 256, which is a challenging width size for most SMT

solvers. Second, expressing the problem involves an ∃∀-quantification, since

we want to find an assignment of instructions that works for all values in the

initial stack. Third, since we look for the gas-optimal code, the problem is not a

satisfaction problem but rather an optimisation problem. We propose a novel

method for gas optimisation which is based on synthesising optimised EVM

blocks using Max-SMT. We implemented our approach in syrup, and evaluated

it on the same data set used for evaluating ebso in Chapter 6. Our results are

very promising: while ebso timed out in 92.12 % of the blocks, we only time

out in 8.64 % and obtain gains that are two orders of magnitude larger than

ebso. These results show that we have found the right balance between what

is optimised by means of symbolic execution and symbolic simplification using

rules and what is encoded as a Max-SMT problem.
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1 pragma solidity ˆ0.4.25;
2 contract addExp{
3 function ae(uint x3, uint x2, uint x1,
4 uint x0) returns (uint){
5 uint x = x3+x2;
6 uint y = x1+x0;
7 return x∗∗y; //EXP operation
8 }
9 }

1 JUMPDEST
2 PUSH1 0x00
3 DUP1
4 PUSH1 0x00
5 DUP6
6 DUP8
7 ADD
8 SWAP2
9 POP

10 DUP4
11 DUP6
12 ADD
13 SWAP1
14 POP
15 DUP1
16 DUP3
17 EXP
18 SWAP3

19 POP
20 POP
21 POP
22 SWAP5
23 SWAP4
24 POP
25 POP
26 POP
27 POP
28 JUMP

Figure 7.1: Solidity code and under-optimised EVM bytecode using solc (right).

7.1 Optimal Bytecode as a Synthesis problem

We provide a general overview of our method for synthesising superoptimised

smart contracts from given EVM bytecode. We use the motivating example

in Figure 7.1 whose Solidity source code contract appears to the left and the

EVM bytecode generated by the solc compiler appears to the right. The gas

consumed by the bytecode in Figure 7.1 (excluding the JUMPDEST and JUMP

opcodes that cannot be optimised and are thus not accounted in the examples)

is 76. Our approach is based on optimising the operations that modify the stack

as we have a great coverage of all potential bytecode optimisations while we

still remain scalable, i.e., we do not optimise instructions whose effects are not

reflected in the stack, e.g., MSTORE, SSTORE, LOG1 or EXTCODECOPY.

Extracting Stack Functional Specifications. Our method takes as input

the set of blocks that make up the control flow graph (CFG) of the bytecode.

The first step is, for each of the blocks, to extract from it a stack functional

specification (SFS) from which the superoptimised bytecode will be synthesised.

The SFS is a functional description of the initial stack when entering the block

and the final stack after executing the block, which instead of using bytecode

instructions to determine how the final stack is computed, is defined by means

of symbolic first-order terms over the initial stack elements. The SFS for our

running example is shown in Figure 7.2. As can be observed, it consists of

an initial stack shown at the left which simply determines what the size of
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x0
x1
x2
x3
x4

=⇒ x4
exp(x2 + x3, x0 + x1)

Figure 7.2: Initial and final stack.

the input stack to the block is and assigns a symbolic variable as identifier

to each stack position, e.g., the initial stack contains five elements named

x0, . . . , x4, while the output stack contains two elements: x4 at the top, and

the symbolic term exp(x2 + x3, x0 + x1) at the bottom. The output stack is

obtained by symbolic execution of the bytecodes that operate on the stack,

as it will be formalized in Section 7.2. The resulting expressions are then

optimised by means of simplification rules based on the semantics of the non-

stack operations, e.g., the neutral elements, double negations or idempotent

operations are removed, operations on constants performed. This captures a

relevant part of the semantics of the non-stack operators.

The Synthesis Problem. This section hints on how the generated bytecode

will be, and on that the synthesis of optimal bytecode from the specification

is challenging.

Example 7.1.1 From Figure 7.2, we know that we have to compute x0 + x1

and x2 + x3, but we have to decide which summation we compute first. We

show two possible computations in Figure 7.3 (both can be synthesised as we

will show in Section 7.3). On the left, we have the best bytecode (together with

the stack evolution) when we first compute x2 + x3 and on the right when we

first compute x0 + x1. Computing first one sub-expression or the other has an

impact on the consumed gas, since the bytecode on the left has a gas cost of 31

and the bytecode on the right has a gas cost of 25, which is indeed the optimum.

Both solutions are far better than the original generated bytecode whose

gas cost was 76. Besides, note that the cost of the two additions and the
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SWAP3 [x3, x1, x2, x0, x4]
SWAP1 [x1, x3, x2, x0, x4]
SWAP2 [x2, x3, x1, x0, x4]
ADD [x2 + x3, x1, x0, x4]
SWAP2 [x0, x1, x2 + x3, x4]
ADD [x0 + x1, x2 + x3, x4]
EXP [(x0 + x1) ∗∗ (x2 + x3), x4]
SWAP1 [x4, (x0 + x1) ∗∗ (x2 + x3)]

ADD [x0 + x1, x2, x3, x4]
SWAP2 [x3, x2, x0 + x1, x4]
ADD [x3 + x2, x0 + x1, x4]
SWAP1 [x0 + x1, x3 + x2, x4]
EXP [(x0 + x1) ∗∗ (x2 + x3), x4]
SWAP1 [x4, (x0 + x1) ∗∗ (x2 + x3)]

Figure 7.3: Bytecode for SFS in Figure 7.2 and optimised bytecode (right).

exponentiation is in total 16 (that necessarily has to remain), which means

that the optimal code has used only 9 units of gas for the rest while the original

code needed 60 units.

The next example shows that the optimal code is obtained when the sub-

terms of the exponential are computed in the other order (compared to the

previous example). Hence, an exhaustive search of all possibilities (with its

associated computational demands) must be carried out to find the optimum.

Example 7.1.2 Let us now in Figure 7.4 consider a slight variation of the

previous example which the functional specification is [x0, x1, x2, x3] to [x3, (x0+

x1) ∗∗ (x0 + x2)]. Now, on the left-hand of Figure 7.4 side we have the best

bytecode (together with the stack evolution) when we compute first x0 +x2 and

on the right-hand side we have the best bytecode when we compute first x0 +x1.

In this case the bytecode on the left has a gas cost of 28, which is indeed the

optimum, and the bytecode on the right has a gas cost of 31. The original

bytecode has gas cost 74, so again the improvement is huge.

Both examples show that, in principle, even if we have the functional

specification that guides the search, we have to exhaustively try all possible

ways to obtain it, if we want to ensure that we have found the optimal bytecode.

Characteristics of our SMT Encoding. Our approach to superoptimise

blocks is based on restricting the problem in such a way that we have both a
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DUP1 [x0, x0, x1, x2, x3]
SWAP3 [x2, x0, x1, x0, x3]
ADD [x2 + x0, x1, x0, x3]
SWAP2 [x0, x1, x2 + x0, x3]
ADD [x0 + x1, x2 + x0, x3]
EXP [(x0 + x1) ∗∗ (x2 + x0), x3]
SWAP1 [x3, (x0 + x1) ∗∗ (x2 + x0)]

DUP1 [x0, x0, x1, x2, x3]
SWAP2 [x1, x0, x0, x2, x3]
ADD [x1 + x0, x0, x2, x3]
SWAP2 [x2, x0, x1 + x0, x3]
ADD [x2 + x0, x1 + x0, x3]
SWAP1 [x1 + x0, x2 + x0, x3]
EXP [(x1 + x0) ∗∗ (x2 + x0), x3]
SWAP1 [x3, (x1 + x0) ∗∗ (x2 + x0)]

Figure 7.4: Bytecode for SFS [x0, x1, x2, x3] to [x3, (x0 + x1) ∗∗ (x0 + x2)].

great coverage of most EVM code optimisations and we can propose an encod-

ing in a simple theory where an SMT solver can perform efficiently. To this

end, the key point is to handle all non-stack operations, like ADD, SUB, AND, OR,

LT, as uninterpreted bytecodes. This allows us to simplify the encoding in two

directions. First, by considering them as uninterpreted bytecodes we can avoid

reasoning on the theory of bit-vectors with width 256. Second, and even more

important, this allows us to express the problem in the existentially quantified

fragment, avoiding the ∃/∀ alternation: We start from the SFS by introducing

fresh variables abstracting out all terms built with uninterpreted functions, in

such a way that every fresh variable represents a term f(a1, . . . , an), where

every ai is either a (256 bit) numeric value, a fresh variable, or an initial stack

variable. We also have sharing by having a single variable for every term, e.g.,

(x0 + 1) ∗∗ (x0 + 1), where x0 is the top of the initial stack, is abstracted into

y0 = EXPU(y1, y1) and y1 = ADDU(x0, 1), where y0 and y1 are fresh variables

and EXPU and ADDU are the uninterpreted bytecodes for exponentiation and ad-

dition, respectively. Now, in order to avoid universal quantification, we take

advantage of the fact that only values from 0 to 2256 − 1 can be introduced in

the stack by a PUSH opcode and hence only this range can appear in the SFS.

Therefore, if we assign values from 2256 on to fresh variables and initial stack

variables we avoid the confusion between themselves and all other values in

the problem.

After these two key observations have been made, we fix the maximal
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number n of opcodes and highest size h of the stack that is allowed in a solu-

tion. This can be bound by analysing the original code generated by the com-

piler. From this, we roughly encode the problem using variables o0, . . . , on−1

to express the operations of our code (together with variables p0, . . . , pn−1 that

encode the value 0 6 pi 6 2256 − 1 added to the stack when oi is a PUSH),

variables si0, . . . , sih−1 to encode the contents of the stack before executing the

operation oi, where si0 is the top of the stack (we also use some Boolean vari-

ables to express the active part of the stack). Using this, we can encode the

behaviour of all stack operations: POP, PUSH, DUP, SWAP for all its versions (like

DUP1, DUP2, . . . ). For the uninterpreted bytecodes fu, we basically add for ev-

ery abstraction y = fu(a1, . . . , am) assertions stating that if we have a1, . . . , am

at the top of the stack at step i (i.e., si0, . . . , s
i
m−1) and we take the operation

f in oi then in step i + 1 we have y, sim, . . . on the top of the stack. Again,

as all fresh variables and initial stack variables have been replaced by values

form 2256 on, there is no confusion with all other values.

As a final remark, we have also encoded the commutativity property of

uninterpreted bytecodes representing the ADD, MUL, AND, OR, etc. This can be

easily made by considering that the arguments can occur at the top of the

stack in the two possible orders. Other properties like associativity are more

difficult to encode.

Optimal Synthesis Using Max-SMT. The last key element is how we en-

code the optimisation problem of finding the bytecode with minimal gas cost.

First, let us describe which notion of optimality we are considering. Our

problem is defined as, given an SFS in which all occurring bytecodes there

are considered uninterpreted and maybe commutative, we have to provide the

bytecode with minimal gas cost whose SFS is equal modulo commutativity to

the given one. From the encoding we have described in the previous section,

we know that every solution to the SMT problem will have the same SFS as

the given one. Hence, we only need to find the solution with minimal gas

cost. In Chapter 6, this was made by implementing a loop on top of the SMT
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solving process which was calling the solver asking every time for a better

solution in terms of gas, which was also encoded in the SMT problem. Such

an approach cannot be easily implemented in an incremental way using the

SMT solver as a black box without the corresponding performance penalty.

Alternatively, we propose to encode the problem as a Max-SMT problem and

hence, we can easily use any Max-SMT optimiser, like Z3 [32], Barcelogic [16],

or (Opti)MathSAT [28], as a black box with an important gain in efficiency.

The Max-SMT encoding adds to the previously defined SMT encoding some

soft constraints, indicating which is the cost associated to choosing every fam-

ily of operators. Then, choosing an operator from the base family has cost 2,

from the verylow 3, and so on and the optimal solution is the solution that

minimizes this cost, which can be obtained with a Max-SMT optimiser.

7.2 SFS from EVM Bytecode

The starting point of our work is the CFG of the EVM bytecode to be opti-

mised. There are a number of tools, e.g., Ethir [4], Madmax [48], Mythril [81]

or Rattle [94]) that are able to compute the CFG and we do not need to for-

malise, neither to implement, this initial CFG generation step. Since there are

bytecode instructions that we do not optimise, for each of the blocks of the

provided CFG, we first perform a further block-partitioning that splits a basic

block into the sub-blocks that will be optimised by our method as defined be-

low. A basic block is defined as a sequence of EVM instructions without any

JUMP bytecode.

Definition 7.2.1 (block-partitioning) Given a basic block B = [b0, b1, ..., bn],
we define its block-partitioning blocks(B) as the longest blocks bi, . . . , bj for
which

blocks(B) =
{

bi, . . . , bj

∣∣∣∣∣
(∀k.i < k < j, bk 6∈ Jump ∪ Terminal ∪ {JUMPDEST}) ∧

(i=0 ∨ bi−1 ∈ Split ∪ {JUMPDEST}) ∧

(j=n ∨ bj+1 ∈ Jump ∪ Split ∪ Terminal)

}

where Jump = {JUMP, JUMPI}, Terminal = {RETURN, REVERT, INVALID, STOP},
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1 SSTORE
2 SWAP1
3 DUP5
4 SWAP1
5 MLOAD
6 SWAP1

7 DUP2
8 MSTORE
9 PUSH1 0x20

10 ADD
11 PUSH1 0x40
12 MLOAD

13 DUP1
14 SWAP2
15 SUB
16 SWAP1
17 LOG2
18 POP

19 PUSH1 0x01
20 SWAP2
21 SWAP1
22 POP
23 JUMP

Block 1 Block 2 Block 3
2 SWAP1
3 DUP5
4 SWAP1
5 MLOAD
6 SWAP1
7 DUP2

9 PUSH1 0x20
10 ADD
11 PUSH1 0x40
12 MLOAD

13 DUP1
14 SWAP2
15 SUB
16 SWAP1

19 POP
20 PUSH1 0x01
21 SWAP2
22 SWAP1
23 POP

Figure 7.5: CFG block of a real smart contract (top), and blocks generated to build
the functional description of the EVM bytecode (bottom).

and Split = {SSTORE, MSTORE, LOG, CALLDATACOPY, CODECOPY, EXTCODECOPY,

RETURNDATACOPY}.

The bytecodes whose effects are not reflected on the stack induce the

partitioning and are omitted in the fragmented sub-blocks. These include the

bytecodes that modify the memory, the storage or record a log, that belong

to the Split set. Figure 7.5 shows a CFG block at the top and the blocks

generated to build the functional description at the bottom. The original CFG

block contains the bytecodes SSTORE, MSTORE, and LOG2. Thus, it is split into

three different blocks that do not contain these bytecodes.

Once we have the partitioned blocks from the CFG, we obtain a functional

description of the output stack (i.e., the stack after executing the sequence of

bytecodes in the block) using symbolic execution for each of the partitioned

blocks. As the stack is empty before executing a transaction and the number of

elements that each EVM bytecode consumes and produces is known, the size of

the stack at the beginning of each block can be inferred statically. We can thus

assume that the initial stack size is given within the CFG. A symbolic stack S

is a list of size k that represents the state of the stack where the list position

0 corresponds to the top of the stack and k − 1 is the index of the bottom of
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(i). τ(S, PUSH x) = [x | S]
(ii). τ(S, DUPi) = [S[i− 1] | S]
(iii). τ(S, SWAPi) = temp = S[0],S[0] = S[i],S[i] = temp
(iv). τ(S, POP) = S.remove(0)
(v) τ(S, OP) = [OP(S[0], ...,S[δ − 1]) | S[δ : len(S)] ]

Figure 7.6: Symbolic execution of the instructions that operate on the stack.

the stack, such that S[i] is the symbolic value stored at the position i of the

stack. Initially, the input stack maps each index to a symbolic variable si.

The symbolic execution of each bytecode is defined using the transfer

function τ which takes a stack S and a bytecode and transforms the stack.

Here, S is represented as a list with operations to concatenate an element (|),

index an element at position i (S[i]) or a range from i to j (S[i : j]), remove an

element at position i (remove(i)), and get the length of the list (len(S)). The

bytecodes transform the S as described in Figure 7.6: (i) the PUSH bytecode

adds the value x to the top of the stack, (ii) DUPi duplicates the element at

position i−1 to the top of the stack, (iii) SWAPi exchanges the value at the top

of the stack with the one stored at position i using a temporary variable temp,

(iv) POP deletes the value stored in the top of the stack, (v) OP represents

all other EVM bytecodes that operate with the stack (arithmetic and bit-wise

operations among others). In that case, τ creates a symbolic expression that is

a functor with the same name as the original EVM bytecode and as arguments

the symbolic expressions stored in the stack elements that it consumes. Here,

δ stands for the number of elements that the EVM bytecode OP gets from the

stack.

Now, the SFS can be defined using the function τ as follows.

Definition 7.2.2 Given a block B with an initial size of the stack k, the initial

state of the stack S0 stores at each position i ∈ {0, ..., k−1} a symbolic variable

si. Then, the transfer function τ is extended to the block B, denoted by τ(B),

as: [s0, . . . , sk−1] if B is empty; and τ(τ(B′), o) if B has o as last operation
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pp2: τ(S, PUSH1 0x00 ) = [0, s0, s1, s2, s3, s4]
pp3: τ(S, DUP1) = [0, 0, s0, s1, s2, s3, s4]
pp5: τ(S, DUP6) = [s2, 0, 0, 0, s0, s1, s2, s3, s4]
pp6: τ(S, DUP8) = [s3, s2, 0, 0, 0, s0, s1, s2, s3, s4]
pp7: τ(S, ADD) = [ADD(s3, s2), 0, 0, 0, s0, s1, s2, s3, s4]
pp8: τ(S, SWAP2) = [0, 0, ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp9: τ(S, POP) = [0, ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp15: τ(S, DUP1) = [ADD(s1, s0), ADD(s1, s0), ADD(s3, s2),

0, s0, s1, s2, s3, s4]
pp16: τ(S, DUP3) = [ADD(s3, s2), ADD(s1, s0), ADD(s1, s0),

ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp17: τ(S, EXP) = [EXP(ADD(s3, s2), ADD(s1, s0)), ADD(s1, s0),

ADD(s3, s2), s0, s1, s2, s3, s4]
pp27: τ(S, POP) = [s4, EXP(ADD(s3, s2), ADD(s1, s0))]

Figure 7.7: Selected results after program points from Figure 7.1.

and B′ is the resulting block without o. The SFS of B is S0 =⇒ S = τ(B).

Example 7.2.1 Consider the block formed by the EVM bytecode shown in Fig-

ure 7.1, starting with the bytecode at program point 2 (pp2 for short) and fin-

ishing with the bytecode at pp27. Before executing the block symbolically, the

initial stack is S0 = [s0, s1, s2, s3, s4] and k = 5. Figure 7.7 shows results at

the next program points after applying the transfer function τ for selected ex-

amples. Altogether, the output stack of the SFS given by τ for the block in

Figure 7.1 is S = [s4, EXP(ADD(s3, s2), ADD(s1, s0))]. For example, we can see

that τ updates the stack inserting a 0 in the top of the stack at pp2. At pp8, it

swaps the element in the top of the stack (ADD(s3, s2)) with the element stored

at position 2 (0). It generates a symbolic expression to represent the addition

at pp7 with the values stored in the position of the stack that it consumes.

At pp17 it generates a new symbolic expression EXP(ADD(s3, s2), ADD(s1, s0)) to

represent the exponentiation of the two elements stored in the top of the stack.

Note that in this case these elements are also symbolic expressions of the two

previous additions symbolically executed before.

Finally, we capture optimisations based on the semantics of the arithmetic
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and bit-wise operations, by applying simplification rules on the SFS of the block

before we proceed to generate the optimised code. This simplification besides

reducing the number of operations includes other notions of simplification as

well. The easiest examples are the application of simplification rules like with

the units of every operation, or with the idempotence of bit-wise Boolean

operators.

7.3 Optimal Synthesis using Max-SMT

We describe our Max-SMT encoding and start by pre-processing the SFS into

an abstract form that is convenient for the encoding. The SFS and the

encoding generated for the example shown in Figure 7.1 are available at

github.com/mariaschett/syrup-backend/tree/master/examples/cav2020.

Abstracting Uninterpreted Functions. Before we apply our encoding, we

need to abstract all sub-expressions occurring in the SFS, by introducing new

fresh variables sk, sk+1, . . . that start after the last stack variable in the ini-

tial stack [s0, . . . , sk−1] of size k. In this process we have a mapping from

fresh variables to shallow expressions of depth one, i.e., built with a function

symbol and variables or constants as arguments. Here we introduce the min-

imal number of fresh variables that allow us to describe the SFS using only

shallow expressions. By minimal, we mean that we use the same variable if

some sub-term occurs more than once. We also take into account commuta-

tivity properties to avoid creating unnecessary fresh variables. Finally if an

uninterpreted function occurs more than once, we add a subscript from 0 on

to distinguish them. As a result we have that the abstracted SFS is defined

by a stack S containing only stack variables, fresh variables or constants in

{0, . . . , 2256 − 1} and a map M from fresh variables to shallow terms formed

by an uninterpreted function applied to stack variables, fresh variables or con-

stants (in {0, . . . , 2256 − 1}). Trivially, all positions in the stack in the SFS

and the abstracted SFS are equal when the map is fully applied to remove all

fresh variables and the subscripts are removed. Moreover, we have that every

uninterpreted function of the SFS has a fresh variable assigned in the map and

https://github.com/mariaschett/syrup-backend/tree/master/examples/cav2020
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all function symbols in the map are different.

Example 7.3.1 The abstraction of the SFS [s4, EXP(ADD(s3, s2), ADD(s1, s0))]

shown in Example 7.2.1 needs three fresh variables s5, s6 and s7. Then,

the abstracted SFS is the stack S = [s4, s7] and the mapping M is defined

as {s5 7→ ADD0(s3, s2), s6 7→ ADD1(s1, s0), s7 7→ EXP(s5, s6)}.

Modelling the Stack. A key element in our encoding is the representation

of the stack and the elements it contains. As mentioned in Section 7.1, a first

observation is that in our approach we will only have in the stack constants

in the domain {0, . . . , 2256 − 1}—we do not care if they represent a negative

number or not, as they are handled simply as 256-bit words—initial stack

variables s0, . . . , sk−1 and fresh variables sk, . . . , sv. In order to distinguish

between constants and the variables si, we assign to every variable si, with

i ∈ {0, . . . , v}, the constant 2256 + i. Now, for instance, we can establish that

a PUSH operation can only introduce a constant in {0, . . . , 2256 − 1} and that

fresh variables si can only be introduced by uninterpreted functions if the

appropriate arguments are in the stack:

SV ≡
∧

06i<v
si = 2256 + i

The rest of stack operations, like DUP or SWAP, just duplicate or move whatever

is in the stack. Since in our encoding we will use the variables s0, . . . , sv, as

they are part of the SFS, we have a first constraint assigning the constant values

to all these variables.

Let us now show how we model the stack along the execution of the

instructions. First, we have to fix a bound on the number of operations bo and

the size of the stack bs. We can apply different heuristics to this end though

considering the initial number of operations and the maximum number of

stack elements involved in the block are sound bounds. We have to express a

stack of bs positions after executing j operations with j ∈ {0, . . . , bo}. To this

end, on the one hand, we use existentially quantified variables xi,j ∈ Z with
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i ∈ {0, . . . , bs − 1} and j ∈ {0, . . . , bo} to express the word at position i of the

stack after executing the first j operations of the code, where x0,j encodes the

word on the top of the stack. On the other hand to complete the modelling

we introduce propositional variables ui,j with i ∈ {0, . . . , bs − 1} and j ∈

{0, . . . , bo}, to denote the utilisation of the stack, i.e., the words that the stack

currently holds. Here, ui,j indicates that the word at position i of the stack

after executing the first j operations exists or not.

Additionally, to simplify the next definitions we have the following

parametrised constraint that, given an instruction step j with 0 < j 6 bo,

two stack positions α and β and a shift amount δ ∈ Z, with 0 6 α, 0 6 α+ δ,

β < bs and β + δ < bs, imposes that the stack after executing j + 1 instruc-

tions between positions α and β is the same as the stack after executing the

j instruction but with a shift of δ; they are moved up if negative and moved

down otherwise:

move(j, α, β, δ) ≡
∧

α6i6β

ui+δ,j+1 = ui,j ∧ xi+δ,j+1 = xi,j

Encoding of Instructions. Let I be the set of instructions occurring in our

problem. The set I is split in three subsets IC]IU]IS, where: IC contains the

commutative uninterpreted functions occurring in the map M of the abstracted

SFS, IU contains the non-commutative uninterpreted functions occurring in M ,

and IS contains the stack operations: PUSH, that introduces an up to 32-byte

item on top of the stack; POP that removes the top of the stack; DUPk, with

k ∈ {1, . . . , 16} that copies the k−1 element of the stack on top of the stack;

SWAPk, with k ∈ {1, . . . , 16} that swaps the top of the stack with the k element

of the stack; and an extra operation NOP that does nothing. Note that, although

in EVM there are 32 different PUSH instructions depending on the amount of

bytes needed to express the item, in our context this distinction is unnecessary,

since we can decide afterwards which PUSH we need by checking in the obtained

solution which is the value to be pushed. Also, the operations DUPk in IS are

reduced to only those with k < bs, otherwise we go beyond the maximal size
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of the stack. Similarly, the operations SWAPk in IS are reduced to only those

with k < bs.

Let θ be a mapping from the set of instructions in I to consecutive different

non-negative integers in {0, . . . ,mι}, where mι + 1 is the cardinality of I.

In order to encode the selected instructions at every step, we introduce the

existentially quantified variables tj ∈ {0, . . . ,mι}, with j ∈ {0, . . . , bo − 1}

where for every instruction ι ∈ I, if tj = θ(ι) then we have that the operation

executed at step j is ι. Additionally, we introduce associated existentially

quantified variables aj ∈ {0, . . . , 2256 − 1}, with j ∈ {0, . . . , bo − 1}, to express

the value pushed at the top of the stack when tj = θ(PUSH). Otherwise the

value of aj is meaningless.

Encoding the Stack Operations. First we show how we encode the effect

of choosing in tj one of the operations in IS that does not depend on the

particular (abstracted) SFS we are considering. The following parametrised

constraints show this effect:

CPUSH(j) ≡ tj = θ(PUSH) ⇒ 0 6 aj < 2256 ∧ ¬ubs−1,j ∧ u0,j+1 ∧

x0,j+1 = aj ∧move(j, 0, bs − 2, 1)

CDUPk(j) ≡ tj = θ(DUPk) ⇒ ¬ubs−1,j ∧ uk−1,j ∧ u0,j+1 ∧

x0,j+1 = xk−1,j ∧move(j, 0, bs − 2, 1)

CSWAPk(j) ≡ tj = θ(SWAPk) ⇒ uk,j ∧ u0,j+1 ∧ x0,j+1 = xk,j ∧ uk,j+1 ∧

xk,j+1 = x0,j ∧move(j, 1, k − 1, 0) ∧

move(j, k + 1, bs − 1, 0)

CPOP(j) ≡ tj = θ(POP) ⇒ u0,j ∧ ¬ubs−1,j+1 ∧move(j, 1, bs − 1,−1)

CNOP(j) ≡ tj = θ(NOP) ⇒ move(j, 0, bs − 1, 0)

Notice that the stack before executing the instruction tj is given in the

variables x0,j, . . . , xbs−1,j and u0,j, . . . , ubs−1,j, while the stack after executing

tj is given in x0,j+1, . . . , xbs−1,j+1 and u0,j+1, . . . , ubs−1,j+1.
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In order to avoid redundant solutions with NOP in intermediate steps, we

have to add as well a constraint stating that once we choose NOP as instruction

tj we can only choose NOP for the following instructions tj+1, tj+2 . . . :

CfromNOP ≡
∧

06j<bo−1
tj = θ(NOP)⇒ tj+1 = θ(NOP)

Encoding Uninterpreted Operations. The encoding of the uninterpreted

operations comes from the map M of the abstracted SFS. First of all, note that,

every function f occurs only once in M , since subscripts are introduced, and for

every r 7→ f(o0, . . . , on−1) in M we have that f ∈ IC ]IU , r is a fresh variable,

and o0, . . . , on−1 are either initial stack variables, fresh variables or constants.

Note also that if f ∈ IC then n = 2. Therefore, we define in the encoding the

effect of choosing in tj the uninterpreted function f with r 7→ f(o0, . . . , on−1)

in M , as an operation that takes its arguments o0, . . . , on−1 from the stack and

places its result r in the stack, where o0 must be at the top of the stack.

CU(j, f) ≡ tj = θ(f) ⇒
∧

06i6n−1
(ui,j ∧ xi,j = oi) ∧ u0,j+1 ∧ x0,j+1 = r ∧

move(j, n,min(bs − 2 + n, bs − 1), 1− n) ∧∧
bs−n+16i6bs−1

¬ui,j+1

where f ∈ IU and r 7→ f(o0, . . . , on−1) ∈M

Now for the commutative functions the only difference is that we know

that n = 2 and that we can find the arguments in any of both orders in the

stack:

CC(j, f) ≡ tj = θ(f) ⇒ u0,j ∧ u1,j ∧

((x0,j = o0 ∧ x1,j = o1) ∨ (x0,j = o1 ∧ x1,j = o0)) ∧

u0,j+1 ∧ x0,j+1 = r ∧move(j, 2, bs − 1,−1) ∧ ¬ubs−1,j

where f ∈ IC and r 7→ f(o0, o1) ∈M
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Finding the Target Program. We assign to every ι ∈ I an integer. Then,

tj ∈ Z encodes the chosen instruction at position j in the target program for

0 6 j < bo. To encode the selection of an instruction for every tj, we have the

following constraint:

CI ≡ CfromNOP ∧
∧

06j<bo

0 6 tj 6 mι ∧

CPUSH(j) ∧ CDUPk(j) ∧ CSWAPk(j) ∧ CPOP(j) ∧ CNOP(j) ∧∧
f∈IU

CU(j, f) ∧
∧
f∈IC

CC(j, f)

Complete Encoding. Let us conclude our encoding by defining the formula

CSFS that states the whole problem of finding an EVM block for a given ini-

tial stack [s0, . . . , sk−1] and abstracted SFS with final stack [f0, . . . , fw−1] and

map M . Hence, we introduce a constraint B to describe how the stack at the

beginning is and a constraint E to describe how the stack at the end is and

combine all the constraints defined above to express CSFS.

B ≡
∧

06α<k
(uα,0 ∧ xα,0 = sα) ∧

∧
k6β6bs−1

¬uβ,0

E ≡
∧

06α<w
(uα,bo ∧ xα,bo = fα) ∧

∧
w6β6bs−1

¬uβ,bo

CSFS ≡ SV ∧ CI ∧B ∧ E

Finally, let us mention that the performance of the used SMT solvers greatly

improves when the following (redundant) constraint, which states that all func-

tions in IU ] IC should be eventually used, is added:

∧
ι∈IU]IC

∨
06j<bo

tj = θ(ι)

Empirical evidence shows, that this constraint helps the solver to establish

optimality, and removing it increases the time-outs and time taken by roughly

50 %. On the other hand, adding the similar constraint that all functions in
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IU]IC are used at most once, while also helping the solvers to show optimality

for already optimal blocks, the performance for finding optimisations decreases

by a similar rate. As the latter is our main motivation, we did not include the

constraint.

From Models to EVM Blocks. The following definition shows how we can

extract a concrete set of operations from a model for the formula CSFS that

computes the given SFS.

Definition 7.3.1 Given a model σ for CSFS we have that block(σ) is de-

fined as the sequence of EVM operations o0, . . . , of where f is the largest

j ∈ {0, . . . , bo − 1} such that tj 6= θ(NOP). Now for all α ∈ {0, . . . , f} the

operation oα is taken as

1. oα = PUSHkaα if tα = θ(PUSH) and aα can be represented with k bytes.

2. oα = ι if tα = θ(ι) where ι ∈ IS \ {PUSH}

3. oα = ι if tα = θ(ι) where ι ∈ IU ] IC and ι has no subscript.

4. oα = ι if tα = θ(ιl) where ιl ∈ IU ] IC and has subscript l.

Optimisation Using Max-SMT. We want to obtain the optimal solution.

Since the cost of the solution can be expressed in terms of the cost of every

of the instructions we select in all tj, we will introduce soft constraints ex-

pressing the cost of every selection. A (partial weighted) Max-SMT problem

is an optimisation problem where we have an SMT formula which establishes

the hard constraints of the problem and a set of pairs {[C1, ω1], . . . , [Cm, ωm]},

where each Ci is an SMT clause and ωi is its weight, that establishes the soft

constraints. In this context, the optimisation problem consists in finding the

model that satisfies the hard constraints and minimizes the sum of the weights

of the falsified soft constraints. Our approach to find the optimal code is by en-

coding the problem as a Max-SMT optimisation problem, where we add to the

SMT formula CSFS which defines our hard constraints a set of soft constraints

such that sum of the weights of the falsified soft constraints coincides with

the cost (in terms of gas) of the operations taken in every step. Therefore the
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optimal solution to the Max-SMT problem coincides with the optimal solution

in terms of gas cost.

In the EVM, every operation has an associated gas cost, which in general

is constant, but in some few cases may depend on the particular arguments it

is applied to or on the state of the blockchain. All these operations that are

non-constant are considered as uninterpreted, and hence we cannot change the

operands on which they are applied. Therefore, omitting the non-constant part

cannot affect which is the optimal solution. Thanks to this, we can split our

set of instructions I in p+ 1 disjoint sets W0 ] . . .]Wp where all instructions

in Wi have the same constant cost costi, and such that the costs are strictly

increasing, i.e., cost0 = 0 and costi−1 < costi for all i ∈ {1, . . . , p}.

In the following we describe the encoding we have chosen for the weighted

clauses (we have tried other slightly simpler alternatives but, in general, they

behave worse). Let wi = costi−costi−1 for i ∈ {1, . . . , p}. Hence, we have that

wi > 0 and, moreover, costi = Σ16α6iwα for i ∈ {1, . . . , p}. Then, our Max-

SMT problem OSFS is obtained adding to CSFS the following soft constraints

OSFS ≡ CSFS ∧
∧

06j<bo

∧
16i6p

[
∨

ι∈W0]...]Wi−1

tj = θ(ι), wi]

Therefore, if the selected instruction at step j is ι (i.e., tj = θ(ι)) for some

ι ∈ Wi then we accumulate the weight wα of all soft clauses with α ∈ {1, . . . , i},

which as said sums costi, and hence we accumulate the cost of executing the

instruction ι.

7.4 Evaluation

This section presents the results of our evaluation using syrup, the synthesiser of

superoptimised smart contracts that implements our approach. Our tool syrup

uses Ethir [4] to generate the CFGs of the analysed contracts and Z3 [32] version

4.8.7, Barcelogic [16], and MathSAT [28] version 1.6.3, namely its optimality

framework (Opti)MathSAT, as SMT solvers. We refer by s-Z3, s-Bar, s-OMS, to

the results of using syrup with the respective solvers. Experiments have been
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ebso s-Z3 s-Bar s-OMS s-All

A 3882 (6.34 %) 20 636 (33.71 %) 20 783 (33.95 %) 20 973 (34.26 %) 20 988 (34.28 %)
O 393 (0.64 %) 25 922 (42.34 %) 26 458 (43.22 %) 28 063 (45.84 %) 28 195 (46.06 %)
B 550 (0.90 %) 6288 (10.27 %) 3051 (4.98 %) 5293 (8.65 %) 5726 (9.35 %)
N n/a 1933 (3.16 %) 563 (0.92 %) 837 (1.37 %) 1020 (1.67 %)
T 56 392 (92.12 %) 6438 (10.52 %) 10 362 (16.93 %) 6051 (9.88 %) 5288 (8.64 %)
G 27 726 1 188 311 1 003 717 1 272 381 1 309 875
S not avail. 13 710 904.75 13 141 046.21 12 239 980.85 10 948 011.57

Table 7.1: Result of optimising with syrup

performed on a cluster with Intel Xeon Gold 6126 CPUs at 2.60 GHz, 2 GB

of memory and time-out of 15 min, running CentOS Linux 7.6. The main

components of syrup are implemented in Python and OCaml. The backend of

syrup generating SMT constraints from a SFS is open-source and can be found

at github.com/mariaschett/syrup-backend. Our tool accepts smart contracts

written in versions of Solidity up to 0.4.25 and EVM bytecode v1.8.18, namely

the three new EVM bytecodes (SHL, SHR and SAR) introduced from the Solidity

compiler version 0.5.0 are not handled yet by Ethir. We use the same data set

(and the results for ebso) from Chapter 6: the blocks of the 2500 most called

contracts deployed on the Ethereum blockchain1 after removing the duplicates

and the blocks which are only different in the arguments of PUSH by abstracting

to word size 4 bit. This results in a data set of 61 217 blocks.

As seen in Definition 7.2.1, we split the 61 217 blocks on certain bytecodes

that are not optimised, leading to a total of 72 450. For comparison, we merge

the split blocks back together. The Table 7.1 shows the results of optimising

the 61 217 blocks by ebso (first column), and by syrup for every solver (next

columns). In column s-All, we use the 3 solvers as a single framework in syrup

that yields the best solution returned by any of the solvers (in parenthesis we

show percentages).

Row A shows the number of blocks that were Already optimal, i.e., those

that cannot be optimised because they already consume the minimal amount of

gas and ebso/syrup find bytecode with the same consumption. Row O contains
1up to Ethereum blockchain block number 7 300 000 until 2019-03-04 01:22:15 UTC

https://github.com/mariaschett/syrup-backend
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the number of blocks that have been optimised and the found solution has been

proven to be Optimal, i.e., the one that consumes the minimum amount of gas

needed to obtain the SFS provided. The solvers used are able to provide the

best solution found until the time-out is reached. Row B contains the number

of blocks that have been optimised into a Better solution that consumes less

gas but it is not shown to be the optimum. Row N shows the number of blocks

that have Not been optimised and not proven to be optimal, i.e., the solution

found is the original one but there may exist a better one. Row T contains

the number of blocks for which no model could be found when the T ime-out

was reached. Row G contains the accumulated Gas savings for all optimised

blocks. Importantly, the real savings would be larger if the optimised blocks

are part of a loop and hence might be executed multiple times. Row S shows

the time in Seconds in which each setting analyses all the blocks.

Let us first compare the results by ebso and our best results when using the

portfolio of solvers in s-All. It is clear from the figures that syrup significantly

outperforms ebso on the number of blocks handled (while ebso times out in

92.12 % of the blocks, we only time-out in 8.64 %) and on the overall gas gains

(two orders of magnitude larger). For the analysed blocks (i.e., those that do

not time-out), the percentages of syrup for number of optimised into better

blocks, into optimal blocks, and those proven to be already optimal, are much

larger than those of ebso. We now discuss how the gains for the blocks that

ebso can analyse compare to the gains by syrup. In particular, if missing part

of the semantics of the uninterpreted instructions and the bytecode SSTORE

significantly affects the gains. Out of 943 examples, where ebso found an

optimisation, in 46 cases syrup proved optimality wrt. the SFS and saved 348

gas but saved less gas than ebso (total 10 514 gas). The source of this gain

is the SSTORE bytecode: there are two blocks where ebso saves 5000 each,

because it realises that we read from a key in storage to then store the value

back unchanged. Our framework naturally extends to handle this storage

optimisation. However, in nearly all of 393 cases, where ebso found an optimal
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solution—in 378 cases—syrup saves as much as ebso amounting to 2670 gas.

That is, the additional semantics did not improve savings. Furthermore, in 43

cases out of 943, the semantics did impede ebso’s performance so that syrup

found a better result with 597 gas versus 440 of ebso. Therefore, we can

conclude that syrup is far more scalable and precise than ebso, the cases in

which syrup optimises less than ebso are seldom and can be naturally handled

in the future. Moreover, they are offset by the cases where syrup did find an

optimisation, whereas ebso did not.



Chapter 8

Populating a Peephole Optimiser

Differently to the previous Chapter 7, we now accept the high cost of finding

optimisations in Chapter 6, but focus on how to generalise them into optimisa-

tion rules to be reusable at a low cost [Hb]. We then leverage these optimisation

rules in a peephole optimiser which uses pattern matching to optimise a small

fragment of code, i.e., a peephole, by applying the optimisation rules. Finding

sound optimisation rules is a bottleneck as witnessed by the peephole optimiser

of the Solidity compiler solc.1 Currently, solc features fewer than 20 rules com-

pared to LLVM’s 1000+ rules. Thus we propose a pipeline to automatically

populate the peephole optimiser of a smart contract compiler by combining

techniques from constraint solving and rewriting as illustrated in Figure 8.1.

Smart contract languages typically have a large and accessible code base

to use as a basis for finding optimisations, e.g., code deployed to public

blockchains or test cases. This allows us to start from an existing code base, to

(1) find optimisations by using automated tools to synthesize observationally

equivalent but cheaper instruction sequences.

To give an example, the bytecode for the Ethereum virtual machine PUSH

0 SUB PUSH 3 ADD SHA3 computes a hash of 3 + (0−w) for some word w already

on the stack. As 3 + (0 − w) = 3 − w the bytecode corresponding to PUSH

3 SUB SHA3, computes the same result and cheaper. From such optimisations,

we can (2) generate rules. Using concepts from rewriting we generalize “unnec-

1github.com/ethereum/solidity/blob/019ec63f63bae7bbe89f5b62bb7b202ef5dadce6/
libevmasm/PeepholeOptimiser.cpp

https://github.com/ethereum/solidity/blob/019ec63f63bae7bbe89f5b62bb7b202ef5dadce6/libevmasm/PeepholeOptimiser.cpp
github.com/ethereum/solidity/blob/ 019ec63f63bae7bbe89f5b62bb7b202ef5dadce6/ libevmasm/PeepholeOptimiser.cpp
https://github.com/ethereum/solidity/blob/019ec63f63bae7bbe89f5b62bb7b202ef5dadce6/libevmasm/PeepholeOptimiser.cpp
github.com/ethereum/solidity/blob/ 019ec63f63bae7bbe89f5b62bb7b202ef5dadce6/ libevmasm/PeepholeOptimiser.cpp
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code base

rules

(3)(a)

find optimi-
sations

generate
rules

PUSH 3
SUB
SHA3

(3)(b)
PUSH 0
SUB
PUSH x
ADD

PUSH x
SUB

(1) (2)

⇛PUSH 0
SUB
PUSH 3
ADD
SHA3

Figure 8.1: Pipeline to automatically generate peephole optimisation rules from a
code base.

essarily specific” arguments and strip away “unnecessary” context to obtain

optimisation rules.

For the above example, we generate the rule PUSH 0 SUB PUSH x ADD ⇛ PUSH

x SUB by generalizing 3 to x. Finally we can (3) feed back and apply the

generated rules to (a) the rules themselves, and (b) the code base and again

start the cycle to find new optimisations. We demonstrate the applicability of

our pipeline in a case study for bytecode EVM. We implemented a prototype:

ppltr, a peephole otimisation rule generator. For phase (1), we use our tool ebso

from Chapter 6. For phase (2), we use sorg, a superoptimisation based rule

generator. All tools are available open-source under the Apache-2.0 license2.

We evaluated our approach on bytecode of the 250 most called contracts of the

Ethereum blockchain, where we found 2032 distinct optimisations from which

we automatically generated 993 optimisation rules.

8.1 Procedure

We assume a machine model with a state over a set of words W with an

observational equivalence relation ≡ on states, which may take only parts of

the state into account. States are modified based on instructions from a set I,

where an instruction ι ∈ I deterministically transforms a state σ into some

state σ′ denoted by σ ι→ σ′. Some instructions act only on parts of the state,

2Available at github.com/juliannagele/ebso/tree/v2.1, github.com/mariaschett/
sorg/tree/v1.1, and github.com/mariaschett/ppltr/tree/v1.0.

https://github.com/juliannagele/ebso/tree/v2.1
github.com/juliannagele/ebso/tree/v2.1
https://github.com/mariaschett/sorg/tree/v1.1
github.com/mariaschett/sorg/tree/v1.1
https://github.com/mariaschett/sorg/tree/v1.1
github.com/mariaschett/sorg/tree/v1.1
https://github.com/mariaschett/ppltr/tree/v1.0
github.com/mariaschett/ppltr/tree/v1.0
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while others take immediate arguments from W. We write ι(w1, . . . , wk) for an

instruction ι ∈ I which takes k immediate arguments w1, . . . , wk ∈W and say

that ι has arity k. For example, in a stack-based machine the instruction PUSH

3 takes the immediate argument 3, while SUB has arity 0, but consumes two

arguments from the stack. A program ρ is a sequence of instructions ι0 · · · ιn.

The length of ρ is its number of instructions, denoted by |ρ|. We write ε for

the empty program and ρ · τ for the concatenation of programs ρ and τ . A

program ρ = ι0 · · · ιn transforms a family of states σ = (σj)j6n+1 by stepwise

transformation, i.e., σ0
ι0→ σ1

ι1→ . . .
ιn→ σn+1, and we write σ0

ρ→→ σn+1. Here

σj is the state after executing j instructions, and σ0 is the designated start

state. We often write states instead of families of states, when the distinction

is clear from the context.

We write cost(ι, σ) for the cost incurred by executing instruction ι on

state σ. The cost of executing a program is simply the sum of the cost of its

instructions: cost(ι0 · · · ιn,σ) = ∑n
j=0 cost(ιj, σj). Two programs ρ and τ are

equal, denoted by ρ = τ , if they are syntactically equal, and equivalent, ρ ≡ τ ,

if they are observationally equivalent, i.e., for states σ and σ′ with σ0 ≡ σ′0,

σ0
ρ→→ σ|ρ|+1, and σ′0

τ→→ σ′|τ |+1 we have σ|ρ|+1 ≡ σ′|τ |+1.

Definition 8.1.1 Let ρ and τ be programs with ρ ≡ τ and cost(ρ,σ) >

cost(τ,σ) for all states σ. Then τ is an optimisation of ρ, and we write

ρ ⫺ τ .

We will show how we can obtain such optimisations—and we will use them

to generate optimisation rules. To do so, we need to define what constitutes a

rule. Therefore we abstract over the immediate arguments of instructions by

using a countably infinite set of variables V . We extend I to IV by adding

instructions ι(x1, . . . , xk) for all x1, . . . , xk ∈ V and all ι ∈ I of arity k > 0.

A program over IV is called a program schema. To obtain a maxi-

mal schema of a program schema s every ι(w1, . . . , wk) in s is replaced by

ι(x1, . . . , xk), where x1, . . . , xk are fresh variables from V . All variables in a

program schema s are collected in Var(s).
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A substitution γ : V → W ∪ V maps variables to variables and words. In

a ground substitution γ the range is restricted to W, i.e., γ : V → W. We

apply γ to a schema s by replacing all variables x in s by γ(x) and write sγ for

the result. Note that sγ is a program. A substitution γ is at least as general

as a substitution γ′, denoted γ ·≤ γ′, if there is a substitution γ′′ such that

γγ′′ = γ′. If γ ·≤ γ′ and γ′ 6 ·≤ γ then we say γ is more general than γ′ and

write γ ·< γ′. We call program schemas s and t observationally equivalent,

and write s ≡ t, if sγ ≡ tγ holds for all γ and write cost(s,σ) > cost(t,σ′) if

cost(sγ,σ) > cost(tγ,σ′) for all γ.

Definition 8.1.2 Let ` and r be program schemas with ` ≡ r and cost(`,σ) >

cost(r,σ). Then `⇛ r is an (optimisation) rule.

By definition, every optimisation ρ ⫺ τ is an optimisation rule ρ ⇛ τ . A

context C is a pair of program schemas (s1, s2). We write C[t] for the program

schema s1 · t · s2 and call s1 a prefix and s2 a postfix of C[t]. A context (s1, s2)

is at least as general as a context (t1, t2), denoted by (s1, s2) 6 (t1, t2), if there

is a context (r1, r2) such that r1 ·s1 = t1 and s2 ·r2 = t2. If C 6 C ′ and C ′ 66 C

then we say C is more general than C ′ and write C < C ′.

The following definition captures all optimisation rules that can produce

a given optimisation when instantiated.

Definition 8.1.3 The optimisation rules for an optimisation ρ ⫺ τ are defined

as R(ρ ⫺ τ) = {` ⇛ r | ρ = C[`γ] and τ = C[rγ] for some substitution γ and

context C}.

For a formal proof we need to ensure that applying peephole optimisa-

tions is sound by the following conjecture. The proof idea is the same as in

Conjecture 6.2.1 in Chapter 6.

Conjecture 8.1.1 If ρ ≡ τ then C[ρ] ≡ C[τ ] for all contexts C.

Find Optimisations. As Definition 8.1.1 suggests finding an optimisation for

a program ρ necessitates finding (i) an observationally equivalent program τ ,
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where (ii) the cost of τ is less than the cost of ρ. In Chapter 6, we express

the above as an SMT problem: given a source program ρ, is there a target

program τ such that for all possible inputs, executing ρ and τ results in the

same final state, but the cost of τ is less than the cost of ρ? However, our rule

generation is robust to how we find our optimisations: given an optimisation,

we can generate an optimisation rule for it.

As Definition 8.1.3 indicates generating optimisation rules from optimisa-

tions requires us (i) to find a substitution γ, and (ii) to find a context C.

Find a Substitution. In the first step we generalise the immediate arguments

of instructions in an optimisation ρ ⫺ τ by finding a substitution. We capture

all possible generalisations of a rule using the following definition.

Definition 8.1.4 The generalised rules of an optimisation rule ρ ⇛ τ are de-

fined as Gen(ρ⇛ τ) = {`⇛ r | `γ = ρ and rγ = τ for some substitution γ}.

Example 8.1.1 Let ρ ≡ τ be the optimisation from the introduction, i.e.,

PUSH 0 SUB PUSH 3 ADD SHA3 ≡ PUSH 3 SUB SHA3. Then Gen(ρ ≡ τ) consists of

two rules: PUSH 0 SUB PUSH x ADD SHA3 ⇛ PUSH x SUB SHA3 and ρ ⇛ τ itself.

Note that the pair PUSH y SUB PUSH x ADD SHA3 and PUSH x SUB SHA3 is not in

Gen(ρ ≡ τ). Applying the substitution γ = {x 7→ 3, y 7→ 0} would yield the

original optimisation, but since PUSH y SUB PUSH x ADD SHA3 6≡ PUSH x SUB SHA3

they do not constitute an optimisation rule.

To implement Gen we can do an exhaustive search as follows: start from a

maximal schema for the given optimisation and try all possibilities of mapping

the variables back to the original values, checking whether the result yields a

rule. The following procedure implements this approach, additionally using an

order on the candidate substitutions to prune the search space.

Definition 8.1.5 We define the function generalise in Algorithm 11.

Using the order ·< on substitutions to prune the search space is key for im-

plementation. Pruning only removes rules covered by others as the following

lemma shows.
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Algorithm 11: Generalise the optimisation rule ρ ⇛ τ .
1 function generalise(ρ ⇛ τ)
2 R := ∅
3 `0, r0 := maximal program schemas `0 and r0 for ρ and τ with

Var(`0) ∩ Var(r0) = ∅
4 γ0 := the substitution γ0 with ρ = `0γ0 and τ = r0γ0
5 Γ := {γ | γ(x) = γ0(x) or γ(x) = y for γ0(x) = γ0(y) and x, y ∈

Var(`0) ∪ Var(r0)}
6 forall γ ∈ Γ do
7 if `0γ ≡ r0γ then
8 R := R ∪ {`0γ ⇛ r0γ}
9 Γ := Γ \ {γ′ | γ ·< γ′}

10 else
11 Γ := Γ \ {γ′ | γ′ ·< γ}

12 return R

Lemma 8.1.1 For every `⇛ r ∈ Gen(α) of a rule α there is a `′ ⇛ r′ ∈

generalise(α) and a substitution γ such that `′γ = ` and r′γ = r.

Proof 8.1.1 We fix `⇛ r ∈ Gen(α). Let `0 and r0 be the maximal schemas

of α. By definition of maximal schema there is a γ′ such that `0γ
′ = ` and

r0γ
′ = r. A renaming of γ′ is in Γ and thus either generalise(α) will consider

it at some point, or it will be removed by either line 9 or line 11.

If it is considered then a renaming of ` ⇛ r is in generalise(α). If it

is removed by line 9, then a substitution γ with γ ·< γ′ and and `0γ ≡ r0γ

was considered. Thus `0γ ⇛ r0γ is in generalise(α) and we have `0γγ
′′ = `

and r0γγ
′′ = r for some γ′′ by γ ·< γ′. If γ′ was removed by line 11 then

a substitution γ with γ′ ·< γ and and `0γ 6≡ r0γ was considered, but this

contradicts the assumption `⇛ r ∈ Gen(α), because observational equivalence

is closed under substitution.

Example 8.1.2 Take the optimisation PUSH 0 PUSH 0 ADD ⫺ ε. Then, `0 is PUSH

x1 PUSH x2 ADD, r0 is ε (line 3), and γ0 = {x1 7→ 0, x2 7→ 0} (line 4). The set Γ

holds { (i) {x1 7→ 0, x2 7→ 0}, (ii) {x1 7→ x1, x2 7→ x2}, (iii) {x1 7→ 0, x2 7→ x2},

(iv) {x1 7→ x1, x2 7→ 0}, (v) {x1 7→ x2, x2 7→ x2}}. Now, assuming we first

pick (iii) for γ in line 6. As PUSH 0 PUSH x2 = `0γ ≡ r0γ = ε, we add the rule
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to R (line 8). Then, we remove (i) from Γ in line 9. Now, because (iii) ·< (i)

holds, i.e., (i) instantiates more as (iii) we can also remove (i) from Γ.

Assume next we pick (v) for γ in line 6. Now, PUSH x1 PUSH x2 = `0γ ≡

r0γ = ε does not hold we remove (v) from Γ (line 11). Additionally, as (v) ·<

(ii), we can also remove (ii).

Find a Context. As a second step We strip the generalised rules of any un-

necessary pre- and postfix. Again we first capture all possible stripped rules

and then give an implementation.

Definition 8.1.6 The stripped rules of a rule ρ ⇛ τ are defined as Con(ρ ⇛

τ) = {`⇛ r | ρ = C[`] and τ = C[r]}.

Example 8.1.3 Continuing Example 8.1.1, for the rule PUSH 0 SUB PUSH x ADD

SHA3 ⇛ PUSH x SUB SHA3 the stripped rules Con contain the rule PUSH 0 SUB

PUSH x ADD ⇛ PUSH x SUB, obtained by stripping away the context (ε, SHA3),

and the original rule itself, since applying the empty context (ε, ε) to a program

yields the program itself.

Example 8.2.2 shows further rules stripped of their context in EVM bytecode.

To implement Con we follow the same strategy as for Gen: try all possible

contexts in an exhaustive search, checking whether they yield a rule and use

an order contexts to prune the search space.

Definition 8.1.7 We define the function strip in Algorithm 12.

Again, the order on contexts allows us to prune the search space without

loss.

Lemma 8.1.2 For every `⇛ r ∈ Con(α) of a rule α there is a `′ ⇛ r′ ∈

strip(α) and a context C such that C[`′] = ` and C[r′] = r.

Proof 8.1.2 We fix a rule `⇛ r ∈ Con(α). Let (s0, t0) be the longest common

prefix and the longest common postfix of α and be `0, r0 the program schemas

with s0 ·`0 ·t0 ⇛ s0 ·r0 ·t0 = α. A context C ′ with C ′[`0] = ` and C ′[r0] = r is in
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Algorithm 12: Strip context from the optimisation rule ρ⇛ τ .
1 function strip(ρ ⇛ τ)
2 R := ∅
3 (s0, t0) := the longest common prefix s0 and the longest common

postfix t0 of ρ and τ
4 `0, r0 := the program schemas `0 and r0 with s0 · `0 · t0 = ρ and

s0 · r0 · t0 = τ
5 Γ := {C | C = (s, t) where s′ · s = s0 and t · t′ = t0 for some s′, t′}
6 forall C ∈ Γ do
7 if C[`0] ≡ C[r0] then
8 R := R ∪ {C[`0] ⇛ C[r0]}
9 Γ := Γ \ {C ′ | C < C ′}

10 else
11 Γ := Γ \ {C ′ | C ′ < C}
12 return R

Γ and thus either strip(α) will consider it at some point, or it will be removed

by either line 9 or line 11.

If it is considered then ` ⇛ r is in strip(α). If it is removed by line 9,

then a context C with C < C ′ and and C[`0] ≡ C[r0] was considered. Thus

C[`0] ⇛ C[r0] is in strip(α) and we have C ′′[C[`0] = ` and C ′′[C[r0]] = r for

some C ′′ by C < C ′. If C ′ was removed by line 11 then a context C with

C ′ < C and and C[`0] 6≡ C[r0] was considered. Again this contradicts the

assumption `⇛ r ∈ Con(α), because observational equivalence is closed under

context.

Example 8.1.4 Take the optimisation CALLVALUE DUP1 ADD ⫺ CALLVALUE

CALLVALUE ADD. Then, s0 is CALLVALUE, t0 is ADD (line 3), and `0 = DUP1

and r0 = CALLVALUE (line 4). The set Γ holds { (i) (ε, ε), (ii) (CALLVALUE, ε),

(iii) (ε, ADD), (iv) (CALLVALUE, ADD)}. Now, assuming we first pick (ii) for C

in line 6. As CALLVALUE DUP1 = C[`0] ≡ C[r0] = CALLVALUE CALLVALUE, we add

the rule to R (line 8). Then, we remove (ii) from Γ in line 9. Now, because

(ii) < (iv) holds, i.e., (iv) is more specific than (ii) we can also remove (iv)

from Γ. Assume next we pick (i) for C in line 6. Now, DUP1 = C[`0] ≡ C[r0] =

CALLVALUE does not hold we remove (iii) from Γ (line 11). Additionally, as
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(iii) < (i), we can also remove (iii).

Soundness and Completeness. Finally, we combine the two functions and

for an optimisation ρ ⫺ τ define sorg(ρ ⫺ τ) = {strip(` ⇛ r) | `⇛ r ∈

generalise(ρ ⇛ τ)}. The rules generated by sorg(ρ ⫺ τ) are sound: for every

`⇛ r ∈ sorg(ρ ⫺ τ) there is a substitution γ and a context C such that C[`γ] =

ρ and C[rγ] = τ . This directly follows from generalise(ρ ⇛ τ) ⊆ Gen(ρ ⇛ τ)

and strip(ρ ⇛ τ) ⊆ Con(ρ ⇛ τ). The rules generated by sorg(ρ ⫺ τ) are also

complete: for every ` ⇛ r ∈ R(ρ ⫺ τ) there is a `′ ⇛ r′ ∈ sorg(ρ ⫺ τ), a

substitution γ and a context C such that C[`′γ] = ` and C[r′γ] = r. This

directly follows from Lemmas 8.1.1 and 8.1.2.

8.2 Case Study

To demonstrate the applicability of our pipeline from Figure 8.1 we implement

it in the context of Ethereum for EVM bytecode.

Find Optimisations with ebso. We find optimisations using our tool ebso

from Chapter 6 using unbounded superoptimisation. In the best case ebso

produces a cheaper, observationally equivalent ebso block.

Generate Rules with sorg. To generate rules for EVM bytecode we imple-

mented sorg, a superoptimisation based rule generator. Like ebso, sorg is imple-

mented in OCaml; sorg depends on ebso for the representation of EVM bytecode

and SMT encoding to check observational equivalence.

The main contribution of sorg is to provide notions of program schema,

substitutions, and context in order to implement the two main procedures:

generalise and strip. For generalise we implement the procedure from Defini-

tion 8.1.5, keeping only the most general rules in the result.

Example 8.2.1 In our evaluation in Section 8.3, we found the following op-

timisation:

1 SWAP1 POP PUSH 0 PUSH 1 MUL PUSH 0 ⫺ SWAP1 POP PUSH 0 DUP1
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Generalizing immediate arguments and dropping the prefix SWAP1 POP sorg

yields two optimisation rules: PUSH x PUSH 1 MUL PUSH x ⇛ PUSH x DUP1 as well

as PUSH 0 PUSH x MUL PUSH 0 ⇛ PUSH 0 DUP1.

For strip we implement the procedure from Definition 8.1.7, keeping only the

most stripped rules.

Example 8.2.2 From the rule CALLVALUE DUP1 POP ⇛ CALLVALUE CALLVALUE

POP sorg can either strip the postfix POP or the prefix CALLVALUE, obtaining the

rules CALLVALUE DUP1 ⇛ CALLVALUE CALLVALUE and DUP1 POP ⇛ CALLVALUE POP.

One main ingredient of both generalise and strip is a check for observational

equivalence. To determine observational equivalence in sorg we use an SMT

encoding with which we already used in Chapter 6 in Definition 6.2.1: two

program schemas ρ and τ , we have ρ ≡ τ if there are no inputs that distinguish

them. With sorg we can now automatically generate rules, but it remains to

glue the tools together and implement a feedback mechanism.

Coordinate with ppltr. To coordinate our tools ebso and sorg we imple-

mented the tool ppltr, a populator for a peephole optimiser. As ebso and sorg,

ppltr is implemented in OCaml. The tool has two main tasks. The first is

to manage the interfaces, i.e., to generate ebso blocks from smart contracts,

generate ebso blocks for a given size k, prepare optimisations generated by

ebso as input for sorg, and analyse and de-duplicate a set of rules produced

by sorg. The second main task is to feed back the optimisation rules, i.e., to

rewrite right-hand sides of the optimisation rules themselves, and apply the

optimisation rules to ebso blocks. To achieve the latter task, ppltr implements

a rewrite engine.

8.3 Evaluation

We evaluate our pipeline by generating optimisation rules for EVM bytecode.

We collected the 250 most called smart contracts until block 9 786 000 at Apr-

01-2020 12:17:26 PM +UTC from the Ethereum blockchain using Google Big-
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Table 8.1: Accumulated savings when applying the rules in R2 on most called
contracts.

acc. gas savings acc. length savings
250 most called contracts 106 811 g 35 699 instructions 3.94 %

1000 most called contracts 435 002 g 146 376 instructions 4.58 %

Query3. We split the 250 contracts into 106 798 ebso blocks E. As peephole

optimisation rules typically span only few instructions, we restrict the size of

a block: using a sliding window we split every block larger than 6 instructions

into k blocks of at most 6 instructions. To reduce the noise, we remove blocks

which are only different in the arguments of PUSH keeping only those with words

of size smaller than 5 bit. We so obtain 54 301 ebso blocks. Using ebso find

1580 optimisations from these blocks, run on a cluster with Intel Xeon Gold

6126 CPUs at 2.60 GHz, 2 GB of memory and a time-out of 15 min. From

these optimisations, we generate 1525 rules with sorg, run on the same set-up.

For 48 optimisations sorg timed out and could not generate rules and we re-

moved roughly half the rules, as they were duplicates generated from different

optimisations. Thus we arrive at 758 rules R0, which we use with the rewrite

engine of ppltr to (a) rewrite the right-hand sides of R0 reducing 4 rules, and

(b) rewrite our original ebso blocks in E, which changed 17 255 ebso blocks.

We again use the same window-size and noise reduction to get 25 585 new

ebso blocks. Going through the same procedure, we find 452 optimisations

with ebso, and generate 435 rules R1 with sorg with 16 time-outs. Combining

the results we get 993 rules R2 = R0 ∪R1 which are available at

github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv

We right-reduced 31 rules in R2 and discarded 967 replicated rules originat-

ing from different optimisations. One optimisation generated two rules (cf.

Example 8.2.1).

To estimate gas and size saving on a contract level we apply the rules inR2

3cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-\
smart-contract-analytics.

https://github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv
github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-\smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-\smart-contract-analytics
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to 1. our original 250 most called smart contracts, and 2. extend the data set to

the 1000 most called contracts. Table 8.1 shows our results. The first column

shows the accumulated gas savings over all contracts, and the second column

shows the accumulated length savings. Note that results depend on the order

in which the rules are applied. First, we can observe that the rules translate

well from 250 to 1000 contracts, achieving roughly 4 times higher savings,

which demonstrates that R2 also extends beyond the original data set, from

which it was generated. Now let us consider the gas savings. In Table 8.1 we

accumulate the cost of all the removed instructions for each contract. How

much is actually saved, however, depends on how often the contract is called

and which parts are executed. Unfortunately we lack the resources to replay all

the transactions to determine the exact savings. Taking into account how often

a contract was called, we save 7.41× 1010 g for the former and 1.02× 1011 g

for the latter. Assuming that about 10 % of a contract is executed per call

and that savings are uniformly distributed, this translates to 41 049.33 $ and

56 505.15 $ for a gas price of 27.6 gwei and an ETH-USD course of 200.62 $,

which are averages from etherscan.io/charts.

While the cost of executing a cheap instruction like ADD or POP may be

negligible, the cost of storing that instruction may not be so. Therefore, we

also look at the savings in length: the overall storage space of the bytecode

reduces by more than 4.5 %. The contract with the highest length saving was

reduced by 19.94 %, removing 345 from originally 1730 instructions.

We also analyse which rules are applied to the contracts. Applying rules

may lead to the applicability of other rules, but exploring all rewrite sequences

is intractable, and we assume that initial applicability on a contract is a rea-

sonable proxy. Figure 8.2 groups rules in R2 by their applicability to the 1000

most called contracts. We can observe a long tail: more than half of the nearly

1k rules are applicable only 10 times or less, whereas the top 50 rules are ap-

plicable more than 500 times. This suggests that, if a smaller set of rules is

desired, this analysis can guide which rules to discard.

https://etherscan.io/charts
etherscan.io/charts
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Figure 8.2: Applicability of rules in R2 to 1000 most called contracts.

1. SWAP1 POP POP ⇛ POP POP (×8926)
2. ISZERO ISZERO ISZERO ⇛ ISZERO (×7893)
3. PUSH y PUSH x SWAP1 ⇛ PUSH x PUSH y (×7742)
4. CALLVALUE DUP1 ⇛ CALLVALUE CALLVALUE (×7740)
5. SWAP1 SLOAD SWAP1 PUSH x EXP SWAP1 ⇛ PUSH x EXP SWAP1 SLOAD (×5625)

Figure 8.3: Rules most applied to the 1000 most called contracts.

Next we inspect the rules within R2. The five most applied rules for the

1000 most called contracts are listed in Figure 8.3. Most of these rules are

relatively simple and should clearly be applied exhaustively. The fourth rule is

perhaps a bit unexpected and may have been missed on manual inspection, but

it is cheaper to execute CALLVALUE twice than duplicating its result. The last

rule hints at a specific compiler produced anti-pattern. Our approach could

also be leveraged to detect those.

Figure 8.4 shows the six rules with the highest gas savings, 17 g and 15 g.

We consider two of these rules in more detail. The rule PUSH 1 MUL PUSH 0 NOT

AND ⇛ ε combines two observations—that 1 and PUSH 0 NOT are neutral elements

for multiplication and AND respectively. Depending on the implementation of

the peephole optimiser it may be desirable to split this rule which could be

achieved by left-reducing the rules. Key to the rule PUSH 0 DUP6 DUP5 SUB LT

ISZERO ⇛ PUSH 1 is the less-than comparison LT with the smallest element 0

always evaluating to false. The rule does not depend on the result of DUP6 DUP5

SUB, and indeed this is replaced by DUP2 PUSH x AND in the otherwise identical

rule in the last line. Generalising those two rules would require the use of

higher-order patterns.



8.3. Evaluation 132

1. PUSH 1 MUL DUP3 PUSH 0 NOT AND ⇛ DUP3
PUSH 1 MUL PUSH 0 NOT AND ⇛ ε

2. PUSH 0 DUP6 DUP5 SUB LT ISZERO ⇛ PUSH 1
PUSH 0 NOT AND EQ ISZERO ISZERO ⇛ EQ
SWAP1 PUSH 0 NOT AND SWAP1 ⇛ ε

PUSH 0 DUP2 PUSH x AND LT ISZERO ⇛ PUSH 1

Figure 8.4: Rules saving most gas.

Table 8.2: Added (+) and removed (−) instructions by group.

arith. comp. ISZERO bitwise DUPi SWAPi PUSH POP env./mem.
(+) 10 27 24 12 47 28 134 14 29
(−) 80 92 108 83 345 952 182 173 18

Rules may not only save gas, but also reduce the length of the produced

code. These often coincide, and indeed the top 14 length-reducing rules, re-

moving 5 instructions each, subsume the above gas-saving rules. On the other

end, there are also rules which save gas but do not reduce the length such as

CALLVALUE DUP1 ⇛ CALLVALUE CALLVALUE saving 1 g. In Table 8.2, we analyse

the right-hand sides ofR2. We investigated which instructions were added (+),

i.e., do not appear on the left-hand side, and removed (−), i.e., appear on the

left- but not the right-hand side of the rule. We group instructions for arith-

metic, comparison, bitwise operations, and environment/memory. Unsurpris-

ingly, many more instructions were removed than added, which is expected,

because removing instructions always saves gas. The majority of removed in-

structions is concerned with the stack layout. Surprisingly, also ISZERO is often

redundant—as also observed in the second rule in Figure 8.3. Still, instructions

are also synthesized on the right-hand side giving rise to optimisations taking

the semantic of an instructions into account—potentially also interacting with

stack manipulation, for example the rule SWAP1 LT ⇛ GT.

Finally, we also successfully validated all rules R2 by running a reference

implementation of the EVM, go-ethereum version 1.9.14 on pseudo-random
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input.4 Therefore, we run the bytecode of every block in E and the bytecode

obtained by applying the rewrite rules to observe that both produce the same

final state.

4github.com/ethereum/go-ethereum

https://github.com/ethereum/go-ethereum
github.com/ethereum/go-ethereum
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Related Work

In this chapter I relate Part I and Part II of this thesis to other results related

to blockchain protocols and programs.

9.1 Blockchain Protocols

For Part I we investigate the genealogy of our results, related protocols, works

related to the Stellar consensus protocol, and compare threshold logical clocks

with block DAGs.

Genealogy. The basis for Chapter 3 is the Stellar protocol from the white

paper by Mazières [75]. Another building block is Garćıa-Pérez et al. [42] in-

vestigating Stellar’s federated voting and its relationship to Bracha’s broadcast

over classical Byzantine quorum systems. However, they did not address the

full Stellar consensus protocol. The basis for Chapter 4—apart from the block

DAG works Hashgraph [10], Blockmania [30], Aleph [41], and Flare [96]—is the

idea to leverage deterministic state machines to replay the behaviour of other

servers, which goes back to PeerReview [51]. There, servers exchange logs of re-

ceived messages for auditing to eventually detect and expose faulty behaviour.

This idea was taken up by block DAG approaches—but with the twist to lever-

age determinism to not send those messages that can be determined. This

allows compressing messages to the extent of only indicating that a message

has been sent as we do in Chapter 4.

Related Protocols. For both Chapters 3 and Chapter 4 there are closely

related concrete protocols. Close to Stellar is Ripple [103] also relying on mu-
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tual trust, and the follow-up protocol called Cobalt that allows for a federated

setting [71]. Close to our block DAG framework are Hashgraph [10], Blockma-

nia [30], Aleph [41], and Flare [96]. Underlying all of these systems is the same

idea: first, build a common block DAG, and then locally interpret the blocks

and graph structure as communication for some protocol: Hashgraph encodes a

consensus protocol in a block DAG structure, Blockmania [30] encodes a simpli-

fied version of PBFT [25], Aleph [41] employs atomic broadcast and consensus,

and Flare [96] builds on federated byzantine agreement from Stellar combined

with block DAGs to implement a federated voting protocol. Naturally, the

correctness arguments of these systems focus on their system, e.g., the cor-

rectness proof in Coq of byzantine consensus in Hashgraph [29]. In our work,

we aim for a different level of generality: we establish structure underlying

protocols which employ block DAGs. To that end, and opposed to previous

approaches, we treat the protocol interpreted on the block DAG completely as

a black-box, i.e., our framework is parametric in this protocol. While our work

focuses on correctness, two recent works show that DAG-based approaches for

concrete protocols are efficient and even optimal: DAG-Rider [57] implements

the asynchronous byzantine atomic broadcast abstraction and is shown to be

optimal with respect to resilience, amortized communication complexity, and

time. Different to our work, DAG-Rider relies on randomness, which is an ex-

tension in our setting. Also Narwhal and Tusk [31] for BFT consensus reports

impressive—also empirically evaluated—performance gains. Moreover, as ar-

gued in [31], our approach enjoys two further benefits for implementations:

load balancing, as we do not rely on a single leader, and equal message size.

On Stellar. Lokhava et al. [66] describe the whole Stellar eco-system, not only

the consensus protocol—including implementation, empirical evaluation, and

deployment and even provide some formal verification. Losa et al. [68] prove

safety and liveness of Stellar under partial synchronicity in Isabelle/HOL and

Ivy. One key point in Stellar is the idea to build quorums based on trust.

This is also the key point in the following works [69, 38]. It is orthogonal to
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Chapter 3, where we take the quorum as given and focus on the protocol. Losa

et al. [69] propose a generalisation of Stellar’s quorums that does not prescribe

constructing them from slices, yet allows different participants to disagree on

what constitutes a quorum. They then propose a protocol solving consensus

over intact sets in this setting that provides better liveness guarantees than

the protocol in [75], but is impractical. Florian et al. [38] reason about the

FBQS underlying the Stellar consensus protocol and give formal definitions for

safety and liveness guarantees based on notions of minimal quorums, minimal

blocking sets, and minimal splitting sets. The authors give some algorithms

and a tool to compute the quorums.

Threshold Logical Clocks. A recently proposed work related to our block

DAG framework in Chapter 4 is the threshold logical clock abstraction [39],

which allows a higher-level protocol to operate on an asynchronous network as

if it were a synchronous network. They do so by defining an abstraction of the

communication at the level of groups. Similar to our framework, also thresh-

old clocks rely on causal relations between messages by including a threshold

number of messages for the next time step. In our setting, this would roughly

correspond to including a threshold number of predecessor blocks for every

block. In contrast, our framework, by only providing the abstraction of a

reliable point-to-point link to P , pushes reasoning about messages to P .

9.2 Blockchain Programs

The work in Part II relates to the following major fields: superoptimisation,

compiler optimisations based on SMT solvers, and analysis of smart contracts.

Superoptimisation. Our work relies heavily on the advances made to push

enumeration and search into a SAT or SMT solver. Joshi et al. [56] leverage

a SAT solver to encode superoptimisation. Gulwani et al. [50] introduce tem-

plates to leverage a solver to synthesise a function implementing a specification

relating desired input and output. Most importantly, Jangda et al. [55] intro-

duce unbounded superoptimisation giving an encoding to shift the search for

an optimal program to the SMT solver. This encoding is the basis for our
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work in Chapter 6. To our knowledge, our approach is the first application

of superoptimisation to smart contracts, but superoptimisation has been used

in other domains. Most notably, the tool Souper [97] is a superoptimiser for

LLVM [65]. Similar to our rewrite and simplification rules in Chapter 7 and

Chapter 8, Souper caches common optimisation patterns. Mukherjee et al. [82]

extend Souper by heuristics to prune the search space to reduce calls to the SMT

solver to check the equivalence between a candidate program and the original

program. In our approach, we circumvent this by pushing the enumeration

into the SMT solver. Similar to our approach in Chapter 8, Bansal et al. [12]

use superoptimisation to automatically generate a peephole optimiser for x86

binaries. However, they do not generalize optimisations into rules but instead

keep them in an optimisation database in order to reapply them. Moreover

it uses an enumeration based superoptimiser, which is more exhaustive, but

limits instruction sequences to length 3. We picked our window size in ppltr to

be 5 and similar to Phothilimthana et al. [91] also use a sliding window. There

are several works on superoptimisation where ideas could be explored in our

context: Sharma et al. [104] find optimisations that hold under certain condi-

tions i.e. in certain contexts, such as for some fixed input. They synthesise

non-trivial and useful conditions for x86 from test cases. The tool TOAST [18]

superoptimises machine code using Answer Set Programming [20] instead of

SAT or SMT solvers. Phothilimthana et al. [91] combine three search heuristics

for finding a cheaper program (enumerative, SAT-solver based, stochastic) and

view superoptimisation as a graph search problem.

Optimisations through SMT. In a more general setting, we next look at

compiler optimisations through SMT solvers. Alive [67] is a framework to specify

peephole optimisation rules for LLVM in the Alive domain specific language

(DSL), to then verify their correctness with an SMT solver using the theory of

bit-vectors—and extensions e.g. floating points [78]. Alive also exploits context

information about the input such as isPowerOfTwo() or cannotOverflow().

Finally, Alive can generate C++ code for the peephole optimisation rules to
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use within LLVM.

Similar to Alive, in Chapter 6–7, we rely on an SMT solver to verify correct-

ness of an optimisation in our approach—but we also rely on the SMT solver to

find them in the first place. However, we do not exploit context information

as Alive does, which would make for interesting future work. As the EVM does

not operate on floating point numbers, neither do our tools. Especially for

ppltr in Chapter 8, the pipeline from Alive is alluring: the Alive DSL may be

a guidance for a specification of peephole optimisation rules—rather than the

ad hoc specification in ppltr—and code generation for the peephole optimiser

of e.g., the Solidity compiler solc would ease adoption. Also OptGen [21] au-

tomatically generates local optimisation rules with unary and binary integer

operations such as ¬, &, + for 8 bit values by enumerating (isomorphic) terms

with up to 2 operators on the left and right hand side of a rule and checking

equivalence with an SMT solver. OptGen generates “symbolic constants” c1,

c2, . . . and eval plus, to find a rule such as c1 + c2 → eval plus(c1, c2). OptGen

also generates rules like x & 0 → 0 with enumerating x which can also be a

term, not only a constant, and OptGen can also suggest conditional rules such

as c1 & c2 = 0 =⇒ (x | c1) & c2 → x & c2. The enumeration approach is sim-

ilar to basic superoptimisation in Chapter 6 and templates [50]. OptGen only

operates on 8 bit values and does not seem to lift this restriction, which we do

by translation validation in Chapter 6. Similar to Alive, OptGen uses context

information by expressing conditional rules, which seems a promising area of

further work. In our rules in Chapter 8, we currently only have constants ci,

and not as OptGen, variables for terms x. It might be interesting to overcome

this in ppltr, but it may require to go towards higher-order rules.

Smart Contract Analysis. In recent years, several tools for analysis of smart

contracts were developed. Oyente [70] uses control flow analysis in order to de-

tect security defects such as reentrancy bugs. The tool Gastap [6] provides

an upper bound on gas consumption of a smart contract by combining static

analysis tools. More recently, tools are looking at optimising smart contracts.
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Chen et al. [26] identified 7 expensive patterns on Solidity contracts with re-

spect to (i) useless code (dead code, opaque predicates), and (ii) loops (e.g.

expensive operations in loops). Their tool Gasper rewrites these expensive pat-

terns. By manual inspection from nearly 300k snippets with window size 1-5,

Chen et al. [27] identified 24 anti patterns, such as OP POP optimises to the

POP instruction. Their tool GasReducer applies anti-patterns to EVM bytecode.

Our tool syrup in Chapter 7 subsumes 21 anti-patterns concerning stack lay-

out and commutativity. These enumerated anti-patterns show how difficult it

is to capture all the interleaving concerning stack layout. We avoid this, by

leveraging the SMT solver. We also capture the anti-pattern OP ISZERO ISZERO

to OP with OP one of LT, GT, SLT, SGT, EQ as part of our simplification rules in

syrup. Two anti-patterns in [27] we cannot support in our approach are the

collapsing multiple JUMPDEST to one JUMPDEST and OP STOP to STOP for OP not a

jump instruction.

The system Gasol [2] also incorporates an automatic optimisation for stor-

age operations that consists of replacing accesses to the storage (SSTORE and

SLOAD) by equivalent accesses to memory locations (MSTORE and MLOAD), when

a static analysis identifies that it is sound and efficient doing such transfor-

mations. Brandstaetter et al. [19] analyse the applicability of “optimisation

strategies” from software engineering on 3k Solidity smart contracts. Their op-

timisation strategies include ideas like loop unrolling, parallel computation, re-

ordering tests, or exploiting algebraic identities. Finally, recent work analysed

the alignment between gas cost and actual execution costs. Yang et al. [114]

experimentally prove that the gas model for some EVM instructions is not

correctly aligned with respect to the observed computational costs in real ex-

periments. Perez et al. [90] use this misalignment in gas to show that this

can lead to gas-related attacks. However, our work is parametric in the gas

model used, and new adjustments in the gas model of Ethereum are integrated

by just updating the cost for the corresponding modified instructions in our

implementation.
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Conclusion

To reiterate the research hypothesis [H]: by applying formal reasoning to

blockchain technologies we can reduce execution costs while guaranteeing cor-

rectness. In my thesis I provide two case studies as evidence towards [H]: for

blockchain protocols in Part I and for blockchain programs in Part II.

10.1 Summary

In Part I I provide evidence towards the sub-hypothesis [Ha]: by applying

formal reasoning to communication protocols we can reduce the number of ex-

changed messages while guaranteeing correctness. This was achieved by com-

pressing messages. The basis for Chapter 3 is the Stellar consensus proto-

col [75]. We first define an abstract—but simpler—version of the Stellar con-

sensus protocol. In the abstract protocol we use federated voting [75], which

is known to be a reliable byzantine broadcast [42], as a black-box. We then

prove that the properties of (weak) byzantine consensus hold. However, the

abstract protocol relies on sending infinitely many messages. To improve this,

we propose a more realistic concrete consensus protocol compressing the in-

finitely many messages to a finite number of messages. We then show that

the concrete protocol refines the abstract protocol and thus the properties of

(weak) byzantine consensus hold. In Chapter 4 we compress messages by two

means: first, by not sending messages which can be inferred due to determin-

ism of the protocol, and second by batching the execution of multiple parallel

instances of a protocol. We give a generic formalization of a block DAG and
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its properties and show that a block DAG is an implementation of a reliable

point-to-point channel, which can be used to implement any deterministic BFT

protocol P efficiently. Hereby, messages emitted by P , which are the results

of the deterministic execution of P , can be omitted. At the same time, multi-

ple parallel instances of P using the same block DAG are executed essentially

‘for free’. Our main result is that using the block DAG framework for a de-

terministic BFT protocol P maintains its interfaces, and safety and liveness

properties.

In Part II I give evidence towards my sub-hypothesis [Hb]: by applying

formal reasoning to smart contracts we can reduce the monetary fees of their

execution while guaranteeing correctness. We reduce monetary fees by opti-

mising gas consumption of EVM bytecode in basic blocks, i.e., EVM bytecode

within a node in the control flow graph of a smart contract. We start by mod-

elling the EVM state and superoptimisation for EVM bytecode as an SMT satis-

fiability problem, based on the encoding of unbounded superoptimisation [55]

in Chapter 6, to automatically find optimised bytecode. We then looked at

superoptimisation for EVM bytecode as a synthesis and an SMT optimisation

problem in Chapter 7. We improve the performance of our first approach

by using symbolic execution to generate a stack functional specification to

solve the SMT optimisation problem efficiently as a synthesis problem, and not

encoding the semantics of the bit-vector operations of the EVM in the SMT

problem. This allows us to express the problem using only existential quan-

tification. Orthogonally in Chapter 8, we generalize the optimisations found

in Chapter 6 to optimisation rules to populate the peephole optimiser of a

smart contract compiler. We implemented three prototypes: a superoptimiser

for EVM bytecode ebso, a synthesizer of super-optimised smart contracts syrup,

and a technique for populating an EVM bytecode peephole optimiser ppltr. The

prototypes are available on www.github.com/mariaschett1 under the Apache-

2.0 license. We evaluated our work on large-scale, real-world data sets from

1Side remark: the prototypes have been forked 12 times and together have 60+ stars as
of July 23, 2021.

https://github.com/mariaschett
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the Ethereum blockchain. In our first evaluation in Chapter 6 we found that

relying on the heavily optimised search heuristics of a modern SMT solver is a

feasible approach—albeit still having performance challenges, e.g., timing out

on 92.12 % of the blocks. Tackling the performance challenges in Chapter 7 in

our next evaluation we found a suitable trade-off between expressiveness and

performance. In our final evaluation in Chapter 8 we automatically generated

993 peephole optimisation rules from the 250 most called contracts and ap-

plied them to the 1000 most called contracts. Applying the rules allowed us

to discard more than 145k superfluous instructions, saving more than 43 000 g

and 4.5 % storage space.

10.2 Critical Discussion

Validity of Protocols. An open challenge for the work on protocols is vali-

dation: how to validate that the specification in Chapter 3 corresponds to the

Stellar protocol? How to validate a run of P in the block DAG framework in

Chapter 4? There are different strategies to validation depending on the use

case. For one, we could empirically evaluate and implement our specification

and test it against a reference implementation2. Similarly, for the block DAG

framework we could implement protocol P and the framework and empirically

evaluate them. However, also this approach comes with several challenges such

as defining the source of truth: the specification or the implementation? Ad-

ditionally, our implementation of the specification may not correspond to the

specification. Finally, it remains to be determined, what exactly we want to

compare in the evaluation: given that Stellar is heavily optimised, it may be

much faster than our implementation, so we definitely would require some ab-

straction over timing. Another way of validating our specifications is through

manual inspection—preferably by the protocol designers. Drawbacks are that

these are laborsome, but certainly flexible and able to capture intuition. Sev-

eral works have addressed the gap between specification and implementation

by extracting a formalised implementation of a protocol, such as Velisarios PBFT

2e.g., github.com/stellar/stellar-core/tree/master/src/scp

https://github.com/stellar/stellar-core/tree/master/src/scp
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in Coq extracting verified code [93] or Raft in Coq [113]. This approach is ex-

pensive and offers no guarantees concerning the performance of the extracted

code. Still, this could be combined with empirical evaluations for very high

assurance. Finally, in the last year another formal specifications of Stellar was

developed independently [68]. If one would show that the two specifications

are equivalent, they would strengthen each other, thereby making a good case

for validity.

Validity of Programs. Similar to the question for protocols is the question

for programs: how to validate that our found programs and our model ac-

tually correspond to the EVM specification. In Chapter 6 we validated every

optimisation by comparing a run of the original and the optimised program

with pseudo-random input on a reference implementation of the EVM (cf. Sec-

tion 6.3). A downside to this approach is that we cannot consider every input.

However, we are convinced that if an instruction would have modified the part

of the EVM state which we did not model, this would have been found by this

approach. Clearly, also the question remains, how to be certain that the im-

plementation adheres to the specification of the EVM. Another possibility is to

run the test cases of the smart contracts and run compliance tests. This would

require non-trivial engineering work, as we are currently not re-building the

optimisations in the smart contracts. We validated our encodings of the in-

structions by manual inspection. Fortunately the encodings of the instructions

are relatively small, self-contained, and correspond well to the definitions in

the EVM specification. Finally, as sketched in Section 6.2, one could formally

proof correctness of the optimisations with a formalisation of the EVM in a

proof assistant. This would also be suitable for integration in verified compil-

ers with correctness guarantees: they come with proofs of correctness. Indeed,

I have integrated part of the peephole optimisation rules from Chapter 8 in a

verified compiler compiling to EVM bytecode.

10.3 Outlook

In this final part I outline several ways to build on the results in my thesis.
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The idea of message compression in Part I could be generalised. Here

we believe the idea could be transferred in both directions: several messages

are compressed into one message, or, a message is decompressed into several

messages. For the first direction, compressing messages, this could be similar to

Chapter 3, where one message triggers several actions, such as prepb aborting

every below-and-incompatible ballot. Similarly, in Chapter 4 one edge in the

block DAG has several meanings essentially enabling parallelism ’for free’. The

other direction, decompressing messages, can either facilitate easier proofs as

in Chapter 3, or can be used for simulation such as in Chapter 4. In Part I,

we give modular definitions with clearly defined interfaces. Our approach in

Chapter 3 a simpler, but unrealistic, protocol with proof of correctness refining

a more realistic implementation can serve as a blueprint for decomposing other

protocols. For the block DAG framework in Chapter 4 future work could try

different modules for e.g., gossip in Algorithm 6. Similarly, the work could be

extended with different high-level protocols P—most notably by moving from

interpreting a deterministic to a non-deterministic protocol P . Then some care

needs to be applied around the security properties assumed from randomness.

If randomness is at the discretion of a server, the server can share the result by

writing it in its next block. For unbiased randomness, one could use the shared

coin protocol from Kokoriskogias et al. [59], secure under BFT assumptions and

in a synchronous network.

While a formal paper proof of correctness gives high assurance, higher

assurance is provided by a mechanised proof in a proof assistant, which also

enables extracting a provably correct implementation. Indeed, in recent years

many authors used proof assistants to proof correctness of protocols: Rahli

et al. gave a safety proof of PBFT in Coq [93]. Woos et al. show the correctness

of Raft in Coq [113]. Crary gave a correctness proof in Coq of byzantine consen-

sus in Hashgraph [29]. Alturki et al. gave a Coq proof of asynchronous safety in

Algorand. Casper has been shown correct in Coq [89] and in Isabelle/HOL [86].

IronFleet uses Dafny for showing safety and liveness of crash-tolerant Multi-
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Paxos [52]. Moreover, safety and liveness under partial synchronicity of Stellar

have been shown in Isabelle/HOL and Ivy in [68]. So future work could be to

mechanize our proofs. Especially, for the block DAG framework as a core net-

work abstraction the high level of assurance of mechanised proofs is certainly

desirable. Moreover, it would ease the checking of optimisations in future work.

In both, Chapter 3 and Chapter 4, we do not consider that correct servers can

crash and recover—which is relevant for real world applications. Especially

the block DAG approach seems to be well suited: it allows servers that recover

to re-synchronise the block DAG, and continue execution—assuming that the

remaining servers stored all the information persistently. This has a caveat:

unless there is a mechanism for the higher level protocol to signal that some in-

formation will never again be needed, the full block DAG has to be stored by all

correct parties forever. This seems to be a limitation of both our abstraction of

block DAG but also the traditional abstraction of reliable point-to-point chan-

nels and the protocols using them. The latter seem to not require protocols

to ever signal that a message is not needed any more (to stop re-transmission

attempts to crashed or byzantine servers). Fixing this issue, and proving that

protocols can be embedded into a block DAG, that can be operated and in-

terpreted using a bounded amount of memory to avoid exhaustion attacks, is

a challenging and worthy future avenue for work. Another open question is

changes of the servers maintaining the protocol, i.e., reconfiguration. Some

work has been done on different views on the system in Stellar in [44], and also

in [69]. Supporting reconfiguration of servers in block DAG protocols seems to

be an open issue, besides splitting protocol instances in pre-defined epochs.

In Part II our approach is tailored towards new, rapidly evolving languages

and their compilers with clear cost models such as gas metering. Thus we

believe it should readily generalise for other bytecodes of other smart contract

languages such as Move [107] and Michelson [61]. Facebook’s Move is a gas-

metered and verification-friendly designed language. The machine model of

Move is stack-based with typed locals. To adapt the presented approach, the
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SMT encodings in Chapter 6 and Chapter 7 would need to be extended to

incorporate types and locals. Michelson, the smart contract language for the

Tezos blockchain, also comes with a detailed formal semantics. Like the EVM

it is a stack-based language, but features high-level data types, like lists, sets,

and maps. To use the presented approach these data types need to be handled

in the SMT encoding and SMT solvers do support complex theories such as

sets and lists. Moreover, type information could be used to prune the search

space, resulting in a positive performance impact.

Further future work is to extend the coverage of EVM bytecode. With the

new Petersburg Version 3e2c089 of the EVM yellow paper [112], new

instructions are available, such as the addition of shift-operators to the EVM.

A second major point is the extension to cover EVM bytecode related to the

EVM’s memory and storage. In Chapter 6 and Chapter 8 we do not opti-

mize instructions related to the semantics of the EVM’s memory. Conceptually

this would be a straightforward extension similar to storage. However, as the

number of universally quantified variables and size of blocks are already pos-

ing challenges for performance, we believe that performance improvements are

more important first. We explored performance improvements via the encod-

ing in Chapter 7. Another avenue would be to improve the solvers themselves.

To facilitate efforts in this direction we contributed benchmarks generated by

ebso to the SMT community3.

Similarly in Chapter 7 we do not optimize instructions related to storage

and the memory. Again, the same methodology we have formalized for the

stack could be extended to optimize the memory and storage bytecode opera-

tions. Finally, future work is the integration into a compiler. Two ideas are to

(i) discover optimizations ad hoc throughout compilation, and (ii) apply opti-

mization rules/peephole optimizations. For finding ad hoc optimizations, our

work in Chapter 7 seems most promising. A next step would be a careful inves-

tigation of performance trade-offs between compile time and optimizations—an

3cf. clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks-tmp/benchmarks-pending/-
/commit/93ba6a5e76c5b850bde8b83ed16a91dc1e64db81.

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks-tmp/benchmarks-pending/-/commit/93ba6a5e76c5b850bde8b83ed16a91dc1e64db81
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks-tmp/benchmarks-pending/-/commit/93ba6a5e76c5b850bde8b83ed16a91dc1e64db81
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avenue we have explored in [3]. To automatically integrate the rules generated

by ppltr into a compiler a domain-specific language like the one used by gcc4

or Alive [67] might prove useful.

The two ideas could even inform each other: in Chapter 7 we do not en-

code the semantics of bit-vector instructions, and instead employ hand-crafted

simplification rules, which could be inspired by, or even automatically derived

from, rules generated by ppltr in Chapter 8.

4gcc.gnu.org/onlinedocs/gccint/The-Language.html

https://gcc.gnu.org/onlinedocs/gccint/The-Language.html
gcc.gnu.org/onlinedocs/gccint/The-Language.html
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[43] Álvaro Garćıa-Pérez and Alexey Gotsman. Federated Byzantine Quorum

Systems (Extended Version). arXiv:1811.03642 [cs], November 2018.

arXiv:1811.03642.
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Appendix A

Appendix: Chapter 3

A.1 Ad Section 3.2

Example A.1.1 Consider the FBQS containing four servers s1 to s4, where

every set of three or more servers is a quorum, and every set of two or more

servers is v-blocking for any v ∈ Srvrs. Consider an execution of ASCP where

the server v3 is faulty. The FBQS has the intact set I = {v1, v2, v4}. We

assume that a set of alphabetical values, which we write in boldface. In the

execution, servers s1 and s2 propose value c, and server s4 propose value a.

The faulty server s3 sends a batch containing the messages VOTE(〈0,⊥〉, false)

and VOTE(〈1,a〉, false) to every correct server, thus helping them to prepare

ballot 〈1, b〉. Since 〈1, b〉 exceeds s4’s candidate ballot 〈1,a〉, server s4 will try

to commit both 〈1,a〉 and 〈1, b〉. However, neither of s1 or s2 will try to commit

any ballot since 〈1, b〉 is smaller than their candidate ballot 〈1, c〉, and therefore

no quorum exists that tries to commit a ballot. Consequently, the timeout at

round 1 of every correct server will expire, and since all of them managed to

prepare 〈1, b〉, they all will try to prepare the increased ballot 〈2, b〉, and will

ultimately commit that ballot and decide value b. Notice that value b was not

proposed by any correct server, but nevertheless all of them agree on the same

decision. To the servers in I, server s3 being faulty is indistinguishable from

the situation where server s3 is correct but slow, and it proposes b. Therefore

the servers in I cannot detect whether the decided value was proposed by some

server in I or not.

Figure A.1 depicts the trace of the execution of ASCP described above. In
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each cell, we separate by a dashed line the events (above the line) that are

triggered atomically, if any, from the batches of messages (below the line) that

are sent by the server, if any. By BNS, the sending of every batch happens

atomically with the events above the dashed line. At each cell, a server has

received every batch in the rows above it. (For convenience, above the dashed

line, we depict ‘batched’ events vote-batch and deliver-batch, which are defined

in Section 3.3. Under the dashed line, we save the ‘batched’ send and receive

primitives, and we depict one batch of messages per line.)

In the first row of Figure A.1, the correct servers s1, s2, and s4 try to

prepare the ballots that they propose (lines 5–7 of Algorithm 3 and lines 3–6 of

Algorithm 2), which results in each of the s1, s2 and s4 sending a VOTE(b, false)

message for each b � 〈1, x〉, where x is respectively c, c, and a. The faulty

server s3 sends a VOTE(b, false) message for each b � 〈1, b〉. Notice the use of

the sequence comprehension notation to denote sequences of events triggered in

a cell, as well as sequences of messages in a batch. Server s1 triggers propose(c)

followed by the batched event vote-batch([b, b � 〈1, c〉], false), which stands for

[ballots[〈0,⊥〉].vote(〈0,⊥〉, false), ballots[〈1,a〉].vote(〈1,a〉, false),

ballots[〈1, b〉].vote(〈1, b〉, false)],

and it sends a batch with the sequence of messages [VOTE(b, false), b � 〈1, c〉],

which stands for

[VOTE(〈0,⊥〉, false), VOTE(〈1,a〉, false), VOTE(〈1, b〉, false)].

In the second row of Figure A.1, servers s1, s2, and s4 start the timer with

delay F (1), since there exist ballot 〈1,a〉 and open interval [〈0,⊥〉, 〈1,a〉) such

that the quorum {s1, s2, s4} receives from itself a message VOTE(〈0,⊥〉, false),

and [〈0,⊥〉, 〈1,a〉) is the singleton containing the null ballot 〈0,⊥〉 (lines 15–17

of Algorithm 3). This means that all correct servers receive from themselves

vote messages that support preparing ballots with rounds bigger or equal than 1.
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In addition to this, servers s1 and s2 send the batch [READY(b, false), b � 〈1, b〉],

since they receive a message VOTE(b, false) for each b � 〈1, b〉 from the quo-

rum {s1, s2, s3}, to which they belong (lines 7–9 of Algorithm 2). And sim-

ilarly, server s4 sends a READY(〈0,⊥〉, false), since it receives the message

VOTE(〈0,⊥〉, false) from all servers, which constitute a quorum to which s4

belongs. Notice that server s4 cannot send READY(〈1,a〉, false) because no quo-

rum to which s4 belongs exists that sends VOTE(〈1,a〉, false).

In the third row of of Figure A.1, servers s1, s2, and s4 deliver false for bal-

lot 〈1,a〉, since they receive the message READY(〈0,⊥〉, false) from the quorum

{s1, s2, s4} to which they all belong (lines 13–15 of Algorithm 2), which results

in each of those servers preparing ballot 〈1,a〉 and triggering lines 8–12 of Al-

gorithm 3. Since the prepared ballot 〈1,a〉 reaches s4’s candidate ballot, then

s4 triggers the batched event vote-batch([〈1,a〉], true) and prepares a batch with

the message VOTE(〈1,a〉, true) that it will send later (lines 8–12 of Algorithm 3

and lines 3–6 of Algorithm 2). In addition to this, server s4 also prepares a

batch with the message READY(〈1,a〉, false) that it will also send later, since

it receives READY(〈1,a〉, false) from the s4-blocking set {s1, s2} (lines 10–12 of

Algorithm 2). Recall that the rule in lines 10–12 of Algorithm 2 allows a server

to send a ready message with some Boolean even if the server previously voted

a different Boolean for the same ballot. Finally, server s4 sends the two batches

prepared before atomically.

In the fourth row of Figure A.1, servers s1, s2 and s4 deliver false for

ballot 〈1, b〉, since they receive a message READY(b, false) for each b � 〈1, b〉

from the quorum {s1, s2, s4} to which they all belong (lines 13–15 of Algo-

rithm 2), which results in each of those servers preparing ballot 〈1, b〉 and

triggering lines 8–12 of Algorithm 3. Since the prepared ballot 〈1, b〉 exceeds

s4’s candidate ballot, then s4 updates its candidate ballot to 〈1, b〉 and triggers

vote-batch([〈1, b〉], true), which results in s4 sending VOTE(〈1, b〉, true) (lines 8–

12 of Algorithm 3 and lines 3–6 of Algorithm 2).

At this point no server can decide any value, because there exists not any
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ballot such that a quorum of servers votes true for it, and the timeouts of all

correct servers will expire after F (1) time.

In the sixth row of Figure A.1, servers s1, s2 and s4 trigger timeout, and

since they all prepared ballot 〈1, b〉, they update their candidate ballot to 〈2, b〉

and trigger the batched event vote-batch.([b, b � 〈2, b〉], false) (lines 18–20 of

Algorithm 3). Servers s1, s2 and s4 send the batch [VOTE(〈2, b〉, false), 〈1, c〉 ≤

b � 〈2, b〉], which contains infinitely many messages that are sent at once by

BNS.

In the seventh row of Figure A.1, servers s1, s2, and s4 start the timer with

delay F (2), since there exist ballot 〈2, b〉 and open interval [〈1, b〉, 〈2, b〉) such

that the quorum {s1, s2, s4} receives from itself the infinitely many messages

VOTE(b, false) with b ∈ [〈1, b〉, 〈2, b〉) (lines 15–17 of Algorithm 3), which are

received at once by BNS. This means that all correct servers receive from them-

selves vote messages that support preparing ballots with rounds bigger or equal

than 2. Then, servers s1, s2, and s4 send the batch [READY(b, false), 〈1, c〉 ≤

b � 〈2, b〉], since they receive a message VOTE(b, false) for each b such that

〈1, c〉 ≤ b � 〈2, b〉 from the quorum {s1, s2, s3} to which they belong (lines 7–9

of Algorithm 2). The batch contains infinitely many messages, which are sent

at once by BNS.

In the eight row of Figure A.1, servers s1, s2, and s4 trigger

deliver-batch(b, 〈1, c〉 ≤ b � 〈2, b〉], false), which stands for a vote false for

each b below and incompatible than 〈2, b〉 for which the server didn’t vote

any Boolean yet, since they receive a message READY(b, false) for each of such

b’s from the quorum {s1, s2, s4} to which they all belong (lines 13–15 of Al-

gorithm 2). Since the prepared ballot 〈2, b〉 reaches the candidate ballot of

all correct servers, they trigger the event vote-batch([〈2, b〉], true) and send a

VOTE(〈2, b〉, true) (lines 8–12 of Algorithm 3 and lines 3–6 of Algorithm 2).

In the ninth row of Figure A.1, servers s1, s2 and s4 send the batch

[READY(〈2, b〉, true)], since they all received VOTE(〈2, b〉, true) from the quorum

{s1, s2, s4} to which all belong (lines 7–9 of Algorithm 2).
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Finally, in the tenth row of Figure A.1, servers s1, s2 and s4 trigger

deliver-batch([〈2, b〉], true), since they all received READY(〈2, b〉, true) from the

quorum {s1, s2, s4} to which all belong (lines 13–15 of Algorithm 2), and they

all decide value b and end the execution.
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Server s1 Server s2 Server s3 Server s4

1 propose(c)
vote-batch([b, b � 〈1, c〉], false)
[VOTE(b, false), b � 〈1, c〉]

propose(c)
vote-batch([b, b � 〈1, c〉], false)
[VOTE(b, false), b � 〈1, c〉]

[VOTE(b, false), b � 〈1,b〉] propose(a)
vote-batch([b, b � 〈1,a〉], false)
[VOTE(〈0,⊥〉, false)]

2 start-timer(F (1))
[READY(b, false), b � 〈1,b〉]

start-timer(F (1))
[READY(b, false), b � 〈1,b〉]

start-timer(F (1))
[READY(〈0,⊥〉, false)]

3 deliver-batch([b, b � 〈1,a〉], false) deliver-batch([b, b � 〈1,a〉], false) deliver-batch([b, b � 〈1,a〉], false)
vote-batch([〈1,a〉], true)
[VOTE(〈1,a〉, true)]
[READY(〈1,a〉, false)]

4 deliver-batch([〈1,a〉], false) deliver-batch([〈1,a〉], false) deliver-batch([〈1,a〉], false)
vote-batch([〈1,b〉], true)
[VOTE(〈1,b〉, true)]

...
...

...
...

6 timeout
vote-batch([b � 〈2,b〉], false)
[VOTE(b, false), 〈1, c〉 ≤ b � 〈2,b〉]

timeout
vote-batch([b � 〈2,b〉], false)
[VOTE(b, false), 〈1, c〉 ≤ b � 〈2,b〉]

timeout
vote-batch([b � 〈2,b〉], false)
[VOTE(b, false), 〈1, c〉 ≤ b � 〈2,b〉]

7 start-timer(F (2))
[READY(b, false), 〈1, c〉 ≤ b � 〈2,b〉]

start-timer(F (2))
[READY(b, false), 〈1, c〉 ≤ b � 〈2,b〉]

start-timer(F (2))
[READY(b, false), 〈1, c〉 ≤ b � 〈2,b〉]

8 deliver-batch([b, 〈1, c〉 ≤ b � 〈2,b〉], false)
[VOTE(〈2,b〉, true)]

deliver-batch([b, 〈1, c〉 ≤ b � 〈2,b〉], false)
[VOTE(〈2,b〉, true)]

deliver-batch([b, 〈1, c〉 ≤ b � 〈2,b〉], false)
[VOTE(〈2,b〉, true)]

9 [READY(〈2,b〉, true)] [READY(〈2,b〉, true)] [READY(〈2,b〉, true)]
10 deliver-batch([〈2,b〉], true)

decide(b)
deliver-batch([〈2,b〉], true)
decide(b)

deliver-batch([〈2,b〉], true)
decide(b)

Figure A.1: Execution of ASCP.
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Server s1 Server s2 Server s3 Server s4

1 propose(c)
brs.prepare(〈1, c〉)
VOTE(prep 〈1, c〉)

propose(c)
brs.prepare(〈1, c〉)
VOTE(prep 〈1, c〉)

VOTE(prep 〈1,b〉) propose(a)
brs.prepare(〈1,a〉)
VOTE(prep 〈1,a〉)

2 start-timer(F (1))
READY(prep 〈1,b〉)

start-timer(F (1))
READY(prep 〈1,b〉)

start-timer(F (1))
READY(prep 〈1,a〉)

3 brs.prepared(〈1,a〉) brs.prepared(〈1,a〉) brs.prepared(〈1,a〉)
brs.commit(〈1,a〉)
VOTE(cmt 〈1,a〉)
READY(prep 〈1,b〉)

4 brs.prepared(〈1,b〉) brs.prepared(〈1,b〉) brs.prepared(〈1,b〉)
brs.commit(〈1,b〉)
VOTE(cmt 〈1,b〉)

...
...

...
...

6 timeout
brs.prepare(〈2,b〉)
VOTE(prep 〈2,b〉)

timeout
brs.prepare(〈2,b〉)
VOTE(prep 〈2,b〉)

timeout
brs.prepare(〈2,b〉)
VOTE(prep 〈2,b〉)

6 start-timer(F (2))
READY(prep 〈2,b〉)

start-timer(F (2))
READY(prep 〈2,b〉)

start-timer(F (2))
READY(prep 〈2,b〉)

7 brs.prepared(〈2,b〉)
brs.commit(〈2,b〉)
VOTE(cmt 〈2,b〉)

brs.prepared(〈2,b〉)
brs.commit(〈2,b〉)
VOTE(cmt 〈2,b〉)

brs.prepared(〈2,b〉)
brs.commit(〈2,b〉)
VOTE(cmt 〈2,b〉)

8 READY(cmt 〈2,b〉) READY(cmt 〈2,b〉) READY(cmt 〈2,b〉)
9 brs.committed(〈2,b〉)

decide(b)
brs.committed(〈2,b〉)
decide(b)

brs.committed(〈2,b〉)
decide(b)

Figure A.2: Execution of CSCP.

A.2 Ad Section 3.3

Example A.2.1 Recall Example A.1.1. Compare the execution of ASCP in

Figure A.1 with infinitely many events and messages with the finite execu-

tion of CSCP in Figure A.2. The servers propose the same values as in

Example A.1.1. In particular, in the first row, the faulty server s3 sends

VOTE(prep 〈1, b〉) to every correct server. As in ASCP every correct server

starts a timer in the second row. As in ASCP server s4 has prepared 〈1,a〉

and sends READY(prep 〈1,a〉) after receiving VOTE(prep bu) from a quorum

for bu ∈ {〈1, b〉, 〈1, c〉} where b′ ∈ {〈0,⊥〉} and b′ � bu (lines 10–12 of Algo-

rithm 4). In the third row, the servers s1, s2 and s4 prepare the maximum ballot

〈1,a〉, as they received READY(prep bu) from a quorum for bu ∈ {〈1,a〉, 〈1, b〉}

where b′ ∈ {〈0,⊥〉} and b′ � bu (lines 18–12 of Algorithm 4). Now server

s4 reaches its candidate value 〈1,a〉 and therefore votes for it. But at the

same time, s4 receives READY(prep(〈1, b〉)) from the s4-blocking set {s1, s2}

and sends READY(prep 〈1, b〉) (lines 14–16 of Algorithm 4). In the fourth,

server s4 only votes one commit statement cmt 〈1, b〉, as opposed to voting
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true for the two ballots 〈1,a〉 and 〈1, b〉 in the fourth row of Figure A.1. Similar

to Example A.1.1, the correct servers decide value b, which was not proposed

by any correct server. As in Figure A.2, at this point no server can decide

any value, because there is no ballot with a quorum of servers for it, and the

timeouts of all correct servers will expire after F (1) time. Then, in the sixth

row of Figure A.2, servers s1, s2 and s4 trigger timeout, and since they all

prepared ballot 〈1, b〉, they update their candidate ballot to 〈2, b〉. Now s1, s2

and s4 have all the same candidate ballot and analogues to row six to nine in

of Figure A.1 can execute CSCP to decide value b and end the execution.

For illustration, the executions in Figure A.2 and A.1 entail concrete and

abstract traces τ and ρ respectively, which consist of the events on the left

of each cell when traversing the tables in left-to-right, top-down fashion, and

where the network events on the right of each cell are intermixed in such a way

that the assumptions on atomic and batched semantics are met. It is routine

to check that H(τ |{1,2,4}) = H(ρ|{1,2,4}) and that ρ|{1,2,4} = σ(τ |{1,2,4}).

Because the proof of Lemma A.2.6 from Chapter 3 is not intrinsically

difficult, but verbose, I give it only in the appendix. The next lemmas help

to establish Lemma A.2.6. The first lemma shows that round, prepared, and

candidate coincide in executions of ASCP and CSCP.

Lemma A.2.1 Let F be an FBQS with some intact set I, s be a server with

s ∈ I, and τ be a trace entailed by an execution of CSCP. If σ(τ) is a trace

entailed by an execution of ASCP, then s.round, s.prepared, and s.candidate

coincide in both executions.

Proof A.2.1 We prove the statement by induction on τ . For the base case, it

suffices to observe, that candidate, prepared, and round coincide when initialised

in line 3 and 4 of Algorithm 5 and line 3 and 4 of Algorithm 3. For the

step case τ = τ ′ · e we consider only the interesting cases, where candidate,

prepared, or round are modified in line 6, line 11, line 16, line 19, and line 20

of Algorithm 5. For the other events in the concrete trace τ , the fields are not

modified and the statement holds.
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Case e = s.propose(x): By definition σ(τ) contains s.propose(x), and by line 6

of Algorithm 5 and by line 6 of Algorithm 3, candidate coincides.

Case e = prepared(b): By definition σ(τ) contains s.deliver-batch([b′, b′ �

b], false). By induction hypothesis prepared coincide, and therefore

prepared < b. Then by line 9 of Algorithm 5 and by line 9 of Algorithm 3,

prepared coincides. Again, by induction hypothesis candidate coincides,

and therefore candidate 6 prepared coincides. If candidate 6 prepared

holds then by line 11 of Algorithm 5 and by line 11 of Algorithm 3,

candidate coincides.

Case e = start-timer(n): By line 15 of Algorithm 5 trace τ ′ contains

s.receive(Mu(stmtu bu), u) from u with stmtu ∈ {cmt,prep} for

a quorum U ∈ Q such that s ∈ U and for each u ∈ U exists

Mu ∈ {VOTE, READY} and bu ∈ Ballot such that round < bu.n.

Sub-case Mu(prep bu). By definition σ(τ ′) contains a batch with

Mu(b′u, false) for every b′u � bu and every Mu(prep bu).

Sub-case Mu(cmt bu). By definition σ(τ ′) contains a batch with

Mu(bu, true) for every Mu(cmt bu).

By induction hypothesis, round and therefore round < bu.n coincides. By

line 16 of Algorithm 5 and by line 16 of Algorithm 3, round coincides.

Case e = timeout: By definition σ(τ) contains s.timeout, and by induction

hypothesis candidate, prepared, and round coincide. Then by line 19 and

20 of Algorithm 5 and line 19 and 20 of Algorithm 3, candidate, prepared,

and round coincide.

The next lemmas relate the prepared ballots between ASCP and CSCP.

First, we establish an invariant on the prepared ballot in CSCP.

Lemma A.2.2 Let F be an FBQS with some intact set I, s be a server with

s ∈ I, and τ be a trace entailed by an execution of CSCP. Then for every ballot
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b ∈ s.Bllts-dl-cmt (respectively, b ∈ s.Bllts-rd-cmt) holds b 6 s.max-dl-prep

(respectively, b 6 s.max-dl-prep).

Proof A.2.2 Assume towards a contradiction, that there is a ballot b ∈

Bllts-dl-cmt (respectively, b ∈ s.Bllts-rd-cmt) such that b > max-dl-prep (re-

spectively, b > s.max-dl-prep). This is only possible, if s sent READY(prep b′)

and READY(cmt b) to itself where b′ < b (lines 19 and 20, and lines 32 and

33 of Algorithm 4), but then s sent contradicting messages, which contradicts

that s ∈ I.

The next lemma guarantees that for no ballot above the maximal delivered

ballot in CSCP, in ASCP this ballot was delivered.

Lemma A.2.3 Let F be an FBQS with some intact set I, s be a server with s ∈

I, and τ be a trace entailed by an execution of CSCP. If σ(τ) is a trace entailed

by an execution of ASCP, for every b > s.max-dl-prep holds s.brs[b].delivered is

false.

Proof A.2.3 Assume towards a contradiction, that s.brs[b].delivered is true.

By lines 13–15 of Algorithm 2 this is only possible if σ(τ) contains an event

s.send-batch(ms, u) with READY(b, a) ∈ ms for a ∈ {true, false} from ev-

ery u in a quorum U . Assume READY(b, true) ∈ ms. Then by defini-

tion σ(τ) contains s.send(READY(cmt b), u) and by lines 32 and 33 of Al-

gorithm 4, b ∈ s.Bllts-dl-cmt, but then b 6 s.max-dl-prep by Lemma A.2.2.

As b > s.max-dl-prep, σ(τ) contains an event s.send-batch(ms, u) with

READY(b, false) ∈ ms and by lines 13–15 of Algorithm 2 this is only possi-

ble if σ(τ) contains an event s.send-batch(ms, u) where READY(b, false) ∈ ms

from every server u in a quorum U where s ∈ U . Again, by definition of σ

and BNS this entails that τ contains s.receive(READY(prep bu), u) for b′ � bu

for every b′ � b, but then, by lines 18 and 19 of Algorithm 4, s.max-dl-prep is

assigned to b and this contradicts b > s.max-dl-prep.

The next lemma guarantees that for no ballot above the maximal readied

ballot in CSCP, in ASCP this ballot is not ready.
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Lemma A.2.4 Let F be an FBQS with some intact set I, s be a server with s ∈

I, and τ be a trace entailed by an execution of CSCP. If σ(τ) is a trace entailed

by an execution of ASCP, for every b > s.max-rd-prep holds s.brs[b].ready is

false.

Proof A.2.4 Assume towards a contradiction, that s.brs[b].ready is true. By

lines 7–9 and lines 10–12 of Algorithm 2 this is only possible if σ(τ) contains an

event s.send-batch(ms, u) with READY(b, a) ∈ ms for a ∈ {true, false} for every

u in either a quorum U or a s-blocking set B. Assume READY(b, true) ∈ ms.

Then by definition σ(τ) contains s.send(READY(cmt b), u) for every u and by

lines 10 and 11, or lines 14 and 15 of Algorithm 4, b ∈ s.Bllts-rd-cmt, but

then b 6 s.max-rd-prep by Lemma A.2.2. As b > s.max-rd-prep, σ(τ) contains

an event s.send-batch(ms, u) with READY(b, false) ∈ ms for every u in either a

quorum U or a s-blocking set B. Assume READY(b, true) ∈ ms. Then again, by

definition of σ and BNS this entails that τ contains s.receive(READY(prep bu), u)

for b′ � bu for every b′ � b for every u in either a quorum U or a s-blocking

set B, but then, by lines 10 and 11, or lines 14 and 15 of Algorithm 4,

s.max-rd-prep is assigned to b and this contradicts b > s.max-rd-prep.

The following lemma relates the committed ballots from CSCP to the de-

livered ballots in ASCP.

Lemma A.2.5 Let F be an FBQS with some intact set I, s be a server with

s ∈ I, and τ be a trace entailed by an execution of CSCP. If σ(τ) is a trace

entailed by an execution of ASCP and b 6∈ Bllts-dl-cmt then b.delivered is false.

Proof A.2.5 Assumes towards a contradiction that b.delivered is true. By

lines 13–15 of Algorithm 2 and BNS, this is only possible if σ(τ) contains an

event s.receive-batch(ms, u) with READY(b, a) ∈ ms for a ∈ {true, false} from

a quorum U such that s ∈ U . If a is true, then by definition of σ, τ contains

s.receive(READY(cmt b), u) from a quorum U such that s ∈ U . By lines 32 and

33 in Algorithm 5, b ∈ Bllts-dl-cmt and this contradicts b 6∈ Bllts-dl-cmt. If a is

false, then s.receive(READY(prep bu), u) from a quorum U such that s ∈ U and
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b′ � bu for every b′ � b. Then by lines 18 and 19 of Algorithm 4, max-dl-prep

is assigned to b and b.delivered is true contradicts Lemma A.2.3.

Finally, we show the key lemma:

Lemma A.2.6 Let F be an FBQS with some intact set I and τ be a trace

entailed by an execution of CSCP. For every finite prefix τ ′ of the projected trace

τ |I , the simulated ρ′ = σ(τ ′) is the prefix of a trace entailed by an execution of

ASCP.

Proof A.2.6 We proceed by induction on the length of τ ′. The case τ ′ = [ ]

is trivial since σ([ ]) = [ ] is the prefix of any trace. We let τ ′ = τ ′1 · [e] and

consider the following cases:

Case e = s.prepare(b): For any execution of the CSCP with trace τ ′1, the pre-

fix τ ′1 contains either the event s.propose(b.x) by lines 5 and 7 of Algo-

rithm 5, or the event s.timeout by lines 18 and 21 of Algorithm 5. The

definition of σ entails that the simulated prefix ρ′1 = σ(τ ′1) contains either

s.propose(b.x) or s.timeout. By the induction hypothesis, the simulated

prefix ρ′1 is entailed by an execution of ASCP. Let the sub-trace that sim-

ulates event e be ρ′e = s.vote-batch([b′, b′ � b], false). We show that ρ′1 ·ρ′e
is the prefix of a trace entailed by an execution of ASCP.

Sub-case s proposes b.x. By lines 5–7 of Algorithm 3, s triggers

s.b′.vote(false) for every b′ � 〈1, b.x〉 is in the execution of ASCP.

Sub-case s triggers timeout By line 21 of Algorithm 5 ballot b equals

candidate and by Lemma A.2.1 candidate coincides. By lines 18–21

of Algorithm 3, s.b′.vote(false) for every b′ � b is in the execution

of ASCP.

As s triggered vote(false) for every b′ � b in both cases. When batched,

this results in the event vote-batch([b′, b′ � b], false), and ρ′1 · ρ′e is the

prefix of a trace entailed by an execution of ASCP.
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Case s.commit(b). By lines 8 and 12 of Algorithm 5, for any execution of

CSCP with trace τ ′, the prefix τ ′1 contains the event s.prepared(b). The

definition of σ entails that the simulated prefix ρ′1 = σ(τ ′1) contains the

event s.deliver-batch([b′, b′ � b], false). By the induction hypothesis, the

simulated prefix ρ′1 is entailed by an execution of ASCP. Let the sub-trace

that simulates event e be ρ′e = s.vote-batch([b′′, φ(τ ′1) < b′′ 6 b], true).

We show that ρ′1 · ρ′e is the prefix of a trace entailed by an execution

of ASCP. Fix a ballot b′′ where φ(τ ′1) < b′′ 6 b. By definition φ(τ ′1)

equals prepared and for every b′′ holds prepared < b′′. Since ρ′1 contains

the event s.deliver-batch([bi, b′ � b], false), s triggered b′.deliver(false) for

each b′ � b, and candidate and prepared coincide by Lemma A.2.1, the

guard at line 8 of Algorithm 3 holds after any of such executions of ASCP.

We can reason in the same fashion for every b′′ in φ(τ ′1) < b′′ 6 b. By

processing b′′ in increasing order of ballots, candidate increases mono-

tonically and triggers s.vote(b′′, true) for every ballot b′′. As s triggered

vote(b′′, true) for every φ(τ ′1) < b′′ 6 b. When batched, this results in the

event s.vote-batch([b′′, φ(τ ′1) < b′′ 6 b], true), and therefore ρ′1 · ρ′e is the

prefix of a trace entailed by an execution of ASCP.

Case e = s.prepared(b). By lines 18 and 20 of Algorithm 4, for any execution

of CSCP with trace τ ′ there exists a maximum b such b > max-dl-prep and

a quorum U that contains server s and for each u ∈ U server s received

READY(prep bu) where b′ � bu for every b′ � b. Therefore the pre-

fix τ ′1 contains for every u ∈ U the event s.receive(READY(prep bu), u).

The definition of σ entails that the simulated prefix ρ′1 = σ(τ ′1) con-

tains the event s.receive-batch([READY(b′u, false), b′u � bu], u) for each

s.receive(READY(prep bu), u) that occurs in τ ′1. By the induction hypoth-

esis, the simulated prefix ρ′1 is entailed by an execution of ASCP. Let

the sub-trace that simulates event e be ρ′e = s.deliver-batch([b′′, b′′ �

b ∧ ∀s.deliver-batch(bs) ∈ σ(τ). (b′, false) 6∈ bs], false). We show that

ρ′1 · ρ′e is the prefix of a trace entailed by an execution of ASCP. Fix a
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ballot b′′ where b′′ � b and there is no batch s.deliverBatch(bs, false)

with b′′ ∈ bs in ρ′1. For each server u ∈ U , we know that ρ′1 con-

tains an event s.receive-batch([READY(b′u, false), b′u � bu], u). As for ev-

ery b′ � b we know b′ � bu, we have b′′ � bu. Thus and by BNS, we

know that s received READY(b′′, false) from u. By Lemma A.2.3 and

by b > max-dl-prep, we know that b′.delivered is false. Therefore, by

lines 13–15 of Algorithm 2, triggers s.b′.deliver(b′, false). We can rea-

son in the same fashion for every ballot b′ and batch the delivers in the

event s.deliver-batch([b′′, b′′ � b∧∀s.deliver-batch(bs) ∈ σ(τ). (b′, false) 6∈

bs], false), and therefore ρ′z1 · ρ′e is the prefix of a trace entailed by an

execution of ASCP.

Case e = s.committed(b): By lines 32 and 34 of Algorithm 4, for any exe-

cution of CSCP with trace τ ′1, there exists a quorum U that contains

server s which is such that s receives READY(cmt b) from every u in U

and b 6∈ Bllts-dl-cmt. The definition of σ entails that the simulated pre-

fix ρ′1 = σ(τ ′1) contains an event s.receive-batch([READY(b, true)], u) for

each s.receive(READY(cmt b), u) that occurs in τ ′1. By the induction hy-

pothesis, the simulated prefix ρ′1 is entailed by an execution of ASCP. Let

the sub-trace that simulates the event e be ρ′e = s.deliver-batch([b], true).

We show that ρ′1 · ρ′e is the prefix of trace entailed by an execution of

ASCP. As s received READY(b, true) from a quorum U where s ∈ U . As

b 6∈ delivered by Lemma A.2.5 deliver is false, and by lines 7 and 9 of

Algorithm 2 triggers s.deliver(b, true). When batched, this results in the

event s.deliver-batch([b], true), and therefore ρ′1 ·ρ′e is the prefix of a trace

entailed by an execution of ASCP.

Case e = s.send(VOTE(prep b), u). By lines 4 and 7 of Algorithm 4, for

any execution of CSCP with trace τ ′, the prefix τ ′1 contains the event

s.prepare(b). The definition of σ entails that the simulated prefix ρ′1 =

σ(τ ′1) contains the event s.vote-batch([b′, b′ � b], false). By the in-

duction hypothesis, the simulated prefix ρ′1 is a trace entailed by an
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execution of ASCP. Let the sub-trace that simulates event e be ρ′e =

s.send-batch([VOTE(b′, false), b′ � b ∧ ∀a ∈ Bool.∀s.send-batch(ms, u) ∈

σ(τ). M(b′, a) 6∈ ms], u). We show that ρ′1 · ρ′e is the prefix of a trace en-

tailed by an execution of ASCP. Fix a ballot b′ � b such that ρ′1 does

not contain the an event s.send-batch(ms, u) with VOTE(b′, false) ∈ ms.

Then by lines 2 and 5 of Algorithm 2 we know that the Boolean voted is

false. Hence, the condition in line 4 of the same figure is satisfied, and

since s.vote-batch([b′, b′ � b], false), s triggered b′.vote(false), appending

s.send-batch(ms, u) with VOTE(b′, false) ∈ ms results in a trace entailed

by an execution of ASCP by line 6 of the same figure. We can reason in

the same fashion for every ballot b′ � b and conclude together with BNS

that ρ′1 · ρ′e is the prefix of a trace entailed by an execution of ASCP.

Case e = s.receive(VOTE(prep b), u). By assumption the network does not

create or drop messages, hence s receives VOTE(prep b) only after u

previously sent the same message and the prefix τ ′1 contains the event

u.send(VOTE(prep b), s). The definition of σ entails that the simulated

prefix ρ′1 = σ(τ ′1) contains an event with u.send-batch([VOTE(b′, a), b′ �

b], s) for a ∈ Bool. By the induction hypothesis, the simulated pre-

fix ρ′1 is entailed by an execution of ASCP. Let the sub-trace that sim-

ulates event e be ρ′e = s.receive-batch([VOTE(b′, false), b′ � b ∧ ∀a ∈

Bool.∀s.receive-batch(ms, u) ∈ σ(τ). VOTE(b′, a) 6∈ ms], u). We show that

ρ′1 · ρ′e is the prefix of a trace entailed by an execution ASCP. By the

ascending-ballot-order convention, it is enough to show that each b′ � b,

s receives a batch with VOTE(b′, a) for a ∈ Bool exactly once in ρ′. For a

fixed b′, an event with s.receive-batch(ms, u) with VOTE(b′, false) ∈ ms is

in ρ′e only if s.b′.receive(VOTE(b′, a), u) is not in ρ′1. On the other hand,

u sent a batch event with u.b′.send(VOTE(b′, a), s) for each b′ � b. Hence,

ρ′1 · ρ′e is the prefix of a trace entailed by an execution of ASCP.

Case e = s.send(READY(prep b), u). For any execution of the CSCP with

trace τ ′1, the server s sends READY(prep b) either after hearing from



A.2. Ad Section 3.3 180

a quorum in line 12 of Algorithm 4, or after hearing from a s-blocking

set in line 16 of the same figure. We consider both cases:

Sub-case s sends READY(prep b) after hearing from a quorum.

By lines 10–12 of Algorithm 4, exists a maximum ballot b such

that max-rd-prep < b and there exists a quorum U such that

s ∈ U and for every server u ∈ U the server s received

VOTE(prep bu) where b′ � bu for every b′ � b. The defi-

nition of σ entails that the simulated prefix ρ′1 = σ(τ ′1) con-

tains an event with s.receive-batch([VOTE(b′u, a), b′u � bu ∧ ∀a ∈

Bool.∀s.receive-batch(ms, u) ∈ σ(τ). VOTE(b′u, a) 6∈ ms], u) for each

server u ∈ U and each event s.receive(VOTE(prep bu), u). By the

induction hypothesis, the simulated prefix ρ′1 is a trace entailed by

an execution of ASCP. Let the sub-trace that simulates event e be

ρ′e = s.send-batch([READY(b′, false), b′ � b ∧ ∀s.send-batch(ms, u) ∈

σ(τ). READY(b′, false) 6∈ ms], u). We show that ρ′1 ·ρ′e is the prefix of a

trace entailed by an execution of ASCP. If b.n = 1 then by b maximal

and b � bu, s received a batch with b′.VOTE(b′, false) for b′ � b from

every u ∈ U such that s ∈ U . Then, by lines 7–9 in Algorithm 2,

by BNS a batch with READY(bj, false) is in ρ′1. If b.n > 1, and as s is

correct, by lines 18–21 and lines 8–17 of Algorithm 5 s prepared the

ballot bvp = 〈b.n − 1, bs.x〉 in the previous round. By lines 18–20 of

Algorithm 4, s sends READY(prep bsp). Hence by definition of σ, a

batch with READY(bj, a) is in ρ′1 for every bj � bvp. It remains to show

that a batch with s.send-batch([READY(bj, false), bps < bj < b], u) is in

ρ′1 · ρ′e. By assumption, for each server u and b′u � bu the server s

received VOTE(b′u, a). It suffices to show that the server s receives

VOTE(bj, false) from every u ∈ U for every ballot bj. Then, by

lines 7–9 and BNS in Algorithm 2 a batch with READY(bj, false) is in

ρ′1. By Lemma A.2.4 and b′ > b > max-rd-prep, ready is false for b′.

Sub-case s sends READY(prep b) after hearing from a s-blocking set.
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By lines 14–16 of Algorithm 4 there exists a maximum ballot b

such that max-rd-prep < b and there exists a s-blocking set B

such that for every u ∈ B the server s received READY(prep bu)

where b′ � bu for every b′ � b. The definition of σ en-

tails that the simulated prefix ρ′1 = σ(τ ′1) contains an event

s.receive-batch([READY(b′u, false), b′u � bu], u) for each server u ∈ B

and each event s.receive(READY(prep bu), u). By the induc-

tion hypothesis, the simulated prefix ρ′1 is entailed by an ex-

ecution of ASCP. Let the sub-trace that simulates event e be

ρ′e = s.send-batch([READY(b′, false), b′ � b ∧ ∀s.send-batch(ms, u) ∈

σ(τ). READY(b′, false) 6∈ ms], u). Fix a ballot b′′ ∈ B such that

b′′ � b and for a batch with s.b′′.send(READY(b′′, false), u) 6∈ σ(τ ′1).

By Lemma A.2.4 and b′′ > b > max-rd-prep, ready is false for b′′.

We have to show that s received READY(b′′, false) from every u in

the s-blocking set B. Then by lines 10–12 in Algorithm 2 s send

READY(b′′, false) to u. As for every b′ � b we know b′ � bu, we have

b′′ � bu. Thus, we know that a batch with READY(b′′, false) is in ρ′1.

Both cases show that for the sub-trace ρ′e that simulates event e, the trace

ρ′1 · ρ′e is the prefix of a trace entailed by an execution of ASCP.

Case e = s.receive(READY(prep b), u). Analogue to case s.receive(VOTE(prep b), u).

Case e = s.send(VOTE(cmt b), u). By lines 23 and 25 of Algorithm 4, for

any execution of CSCP with trace τ ′ the prefix τ ′1 contains the event

s.commit(b). The definition of σ entails that the simulated prefix ρ′1 =

σ(τ ′1) contains the event s.vote-batch([b′, φ(ρ′1) < b′ 6 b], true). By the in-

duction hypothesis, the simulated prefix ρ′1 is the prefix of a trace entailed

by an execution of ASCP. Let the sub-trace that simulates event e be ρ′e =

s.send-batch([VOTE(b′, true), φ(ρ′1) < b′ 6 b], u). We show that ρ′1·ρ′e is the

prefix of a trace entailed by an execution of ASCP. Fix a ballot b′ such that

ρ′1 does not contain a s.send-batch(ms, u) with VOTE(b′, true) ∈ ms. By
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line 24 of Algorithm 4, we know that b′ = max-vt-prep, and by lines 4–7 of

the same figure, s did not send VOTE(prep b′′) for any b′′ > max-vt-prep.

By definition of σ, a batch event with s.b′.send(VOTE(b′, false), u) 6∈ σ(τ)

for b′ > b. As b 6∈ Bllts-vt-cmt, again by definition of σ, a batch

event with s.b′.send(VOTE(b′, true), u) 6∈ σ(τ). Therefore we know that

the Boolean voted is false. Hence, the condition in line 4 of the

same figure is satisfied. Since s.vote-batch([b′, φ(ρ′1) < b′ 6 b], true),

s triggered b′.vote(true), appending an event s.send-batch(ms, u) with

VOTE(b, true) ∈ ms results in the prefix of a trace entailed by an exe-

cution of ASCP by line 6. We can reason in the same fashion for every b′

in φ(σ(τ)) < b′ 6 b, and therefore and by BNS ρ′1 · ρ′e is a trace entailed

by an execution of ASCP.

Case e = s.receive(VOTE(cmt b), u). By assumption the network does not cre-

ate or drop messages, hence s receives VOTE(cmt b) only after u pre-

viously sent the same message and the prefix τ ′1 contains the event

u.send(VOTE(cmt b), s). The definition of σ entails that the simulated

prefix ρ′1 = σ(τ ′1) contains an event with u.send-batch([VOTE(b, false)], s).

By induction hypothesis ρ′1 is the prefix of a trace entailed an ex-

ecution of ASCP. Let the sub-trace that simulates event e be ρ′e =

s.receive-batch([VOTE(b′, true), b′ ∈ {b′ | φ(ρ′1) < b′ 6 b}], u). We show

that ρ′1 · ρ′e is the prefix of a trace entailed by an execution of ASCP. As

u sent VOTE(cmt b) to s, we know that s receives VOTE(b′, true) exactly

once for every b′ ∈ {b′ | φ(ρ′1) < b′ 6 b} and the batch is exactly once

in ρ′. Hence, ρ′1 · ρ′e is the prefix of a trace entailed by an execution of

ASCP.

Case e = s.send(READY(cmt b), u). For any execution of CSCP with trace τ ′1,

the server s sends READY(cmt b) either after hearing from a quorum in

line 28 of Algorithm 4, or after hearing from a s-blocking set in line 31

of the same figure. We consider both cases:
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Sub-case s sends READY(cmt b) after hearing from a quorum.

By lines 26–28 of Algorithm 4 there exists a quorum U such

that s ∈ U and for every server u ∈ U the server s received

VOTE(cmt b) and b 6∈ readied and b > max-rd-prep. The defini-

tion of σ entails that the simulated prefix ρ′1 = σ(τ ′1) contains an

event s.receive-batch([VOTE(b′, a), φ(ρ′1) < b′ 6 b], u) and for every

u ∈ U such that s ∈ U for every event s.receive(VOTE(cmt b), u).

By the induction hypothesis, the simulated prefix ρ′1 is a trace en-

tailed by an execution of ASCP. Let the sub-trace that simulates

event e be s.send-batch([READY(b, true)], u). We show that ρ′1 · ρ′e
is the prefix of a trace entailed by an execution of ASCP. If s re-

ceived VOTE(b, true) from a quorum U such that s ∈ U and readied

in Algorithm 2 is false, then by lines 7–9 in Algorithm 2, a batch

with READY(b, true) is in ρ′1. Assume a s.receive-batch(ms, u) with

VOTE(b, false) ∈ ms is in ρ′1. By definition of σ this is only possi-

ble, if s received VOTE(prep bu) for some bu > b. As s processed

s.receive(VOTE(cmt b), u) and as s is correct, s cannot have pro-

cessed s.receive(READY(prep bu), u). Hence s received VOTE(b, true)

from u, and as s has not received VOTE(b, false), readied in Algo-

rithm 2 is false.

Sub-case s sends READY(cmt b) after hearing from a s-blocking set.

By lines 29–31 of Algorithm 4 there exists a maximum ballot b and

a s-blocking set B such that s received READY(cmt b) from every

server u ∈ B and b 6∈ readied and b > max-rd-prep. The defi-

nition of σ entails that the simulated prefix ρ′1 = σ(τ ′1) contains

the event s.b.receive(READY(b, a), u) for a ∈ {true, false} for every

u ∈ B. By the induction hypothesis, ρ′1 is the prefix of a trace

entailed by an execution of ASCP. Let the sub-trace that simulates

e be s.send-batch([READY(b, true)], u). We show that ρ′1 · ρ′e is the

prefix of a trace entailed by an execution of ASCP. We have to
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show that s received READY(b, true) from a s-blocking set B and

readied in Algorithm 2 is false. Then by lines 10–12 in Algorithm 2,

s.send-batch(ms, u) with READY(b, true) is in ρ′1. Assume s received

READY(b, false) from u. By definition of σ this is only possible,

if s received READY(prep bu) for some bu > b. As s processed

s.receive(READY(cmt b), u) and as s is correct, s cannot have pro-

cessed s.receive(READY(prep bu), u). Hence s received READY(b, true)

from u, and as s has not received VOTE(b, false), readied in Algo-

rithm 2 is false.

Both cases show that for the sub-trace ρ′e that simulates event e, the trace

ρ′1 · ρ′e is the prefix of a trace entailed by an execution of ASCP.

Case e = s.receive(READY(cmt b), u). Analogue to case s.receive(VOTE(cmt b), u).

Case e = s.propose(x). Straightforward by definition of σ, since τ contains

s.propose(x) iff the simulated ρ = σ(τ) contains s.propose(x).

Case e = s.decide(x). By lines 13–14 in Algorithm 5, for any execution of

CSCP with trace τ ′ the server s decides value x only after s trig-

gers committed(b) for a ballot b with b.x = x. The definition of

σ entails that the simulated prefix ρ′1 = σ(τ ′1) contains the event

s.deliver-batch([b], true). By induction hypothesis ρ′1, the simulated prefix

ρ′1 is entailed by an execution of ASCP. Let the sub-trace that simulates

event e be ρ′e = [s.decide(x)]. We show that ρ′1 · ρ′e is the prefix of a trace

entailed by an execution of ASCP. As s.deliver-batch([b], true), s triggered

deliver(true) for ballot b, by lines 13 and 14 of Algorithm 3, s.decide(x)

is in the execution of ASCP and ρ′1 · ρ′e is the prefix of a trace entailed by

an execution of ASCP.

Case e = s.start-timer(n): By lines 15–17 of Algorithm 5 for any execution of

CSCP with trace τ ′1, there exists a quorum U which is such that s receives

M(stmt bu) where M ∈ {VOTE, READY} and stmt ∈ {cmt,prep} from
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every u in U and round < bu.n. The definition of σ entails that the simu-

lated prefix ρ′1 = σ(τ ′1) contains the event s.receive-batch([M(b′, false), b′ �

bu], u)

for every s.receive(M(prep bu), u) that occurs in τ ′1, or s.receive-batch([M(bu, true)], u)

for every s.receive(M(cmt bu), u) that occurs in τ ′1. By induction hypoth-

esis ρ′1 is the prefix of a trace entailed by an execution of ASCP. Let the

sub-trace that simulates the event e be ρ′e = [s.start-timer(n)]. We show

that ρ′1 · ρ′e is the prefix of trace entailed by an execution of ASCP. By

Lemma A.2.1 coincides round and by assumption n < bu.round holds.

We have distinguish two cases:

Sub-case s received M(prep bu) from u. The definition of σ entails

that the simulated prefix ρ′1 = σ(τ ′1) contains an event with

s.receive-batch([Mu(b′u, false), b′u � bu], u) and every Mu(prep bu).

Sub-case Mu(cmt bu). The definition of σ entails that the simulated

prefix ρ′1 = σ(τ ′1) contains a s.receive-batch([Mu(bu, true)], u) for ev-

ery Mu(cmt bu).

Combining the cases leads to the conditions in line 15 in Algorithm 3

satisfied. Thus, by line 17 of the same figure, s.start-timer(n) is in the

execution of ASCP and ρ′1 · ρ′e is the prefix of a trace entailed by an exe-

cution of ASCP.

Case e = s.timeout: Straightforward by definition of σ, since τ contains

s.timeout iff the simulated ρ = σ(τ) contains s.timeout.
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