Abrego Rangel, Luis Alberto;
(2021)
Information processing in biological complex systems: a view to bacterial and neural complexity.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Abrego Rangel_10136461_Thesis_redacted.pdf Download (31MB) | Preview |
Abstract
This thesis is a study of information processing of biological complex systems seen from the perspective of dynamical complexity (the degree of statistical independence of a system as a whole with respect to its components due to its causal structure). In particular, we investigate the influence of signaling functions in cell-to-cell communication in bacterial and neural systems. For each case, we determine the spatial and causal dependencies in the system dynamics from an information-theoretic point of view and we relate it with their physiological capabilities. The main research content is presented into three main chapters. First, we study a previous theoretical work on synchronization, multi-stability, and clustering of a population of coupled synthetic genetic oscillators via quorum sensing. We provide an extensive numerical analysis of the spatio-temporal interactions, and determine conditions in which the causal structure of the system leads to high dynamical complexity in terms of associated metrics. Our results indicate that this complexity is maximally receptive at transitions between dynamical regimes, and maximized for transient multi-cluster oscillations associated with chaotic behaviour. Next, we introduce a model of a neuron-astrocyte network with bidirectional coupling using glutamate-induced calcium signaling. This study is focused on the impact of the astrocyte-mediated potentiation on synaptic transmission. Our findings suggest that the information generated by the joint activity of the population of neurons is irreducible to its independent contribution due to the role of astrocytes. We relate these results with the shared information modulated by the spike synchronization imposed by the bidirectional feedback between neurons and astrocytes. It is shown that the dynamical complexity is maximized when there is a balance between the spike correlation and spontaneous spiking activity. Finally, the previous observations on neuron-glial signaling are extended to a large-scale system with community structure. Here we use a multi-scale approach to account for spatiotemporal features of astrocytic signaling coupled with clusters of neurons. We investigate the interplay of astrocytes and spiking-time-dependent-plasticity at local and global scales in the emergence of complexity and neuronal synchronization. We demonstrate the utility of astrocytes and learning in improving the encoding of external stimuli as well as its ability to favour the integration of information at synaptic timescales to exhibit a high intrinsic causal structure at the system level. Our proposed approach and observations point to potential effects of the astrocytes for sustaining more complex information processing in the neural circuitry.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Information processing in biological complex systems: a view to bacterial and neural complexity |
Event: | UCL |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health > Womens Cancer |
URI: | https://discovery.ucl.ac.uk/id/eprint/10136461 |
Archive Staff Only
View Item |