Dorman, A;
Binenbaum, I;
Abu-Toamih Atamni, HJ;
Chatziioannou, A;
Tomlinson, I;
Mott, R;
Iraqi, FA;
(2021)
Genetic mapping of novel modifiers for ApcMin induced intestinal polyps’ development using the genetic architecture power of the collaborative cross mice.
BMC Genomics
, 22
, Article 566. 10.1186/s12864-021-07890-x.
Preview |
Text
bmc.genetics.2021.Dorman.pdf - Published Version Download (1MB) | Preview |
Abstract
Background: Familial adenomatous polyposis is an inherited genetic disease, characterized by colorectal polyps. It is caused by inactivating mutations in the Adenomatous polyposis coli (Apc) gene. Mice carrying a nonsense mutation in the Apc gene at R850, which is designated ApcMin/+ (Multiple intestinal neoplasia), develop intestinal adenomas. Several genetic modifier loci of Min (Mom) were previously mapped, but so far, most of the underlying genes have not been identified. To identify novel modifier loci associated with ApcMin/+, we performed quantitative trait loci (QTL) analysis for polyp development using 49 F1 crosses between different Collaborative Cross (CC) lines and C57BL/6 J-ApcMin/+mice. The CC population is a genetic reference panel of recombinant inbred lines, each line independently descended from eight genetically diverse founder strains. C57BL/6 J-ApcMin/+ males were mated with females from 49 CC lines. F1 offspring were terminated at 23 weeks and polyp counts from three sub-regions (SB1–3) of small intestinal and colon were recorded. Results: The number of polyps in all these sub-regions and colon varied significantly between the different CC lines. At 95% genome-wide significance, we mapped nine novel QTL for variation in polyp number, with distinct QTL associated with each intestinal sub-region. QTL confidence intervals varied in width between 2.63–17.79 Mb. We extracted all genes in the mapped QTL at 90 and 95% CI levels using the BioInfoMiner online platform to extract, significantly enriched pathways and key linker genes, that act as regulatory and orchestrators of the phenotypic landscape associated with the ApcMin/+ mutation. Conclusions: Genomic structure of the CC lines has allowed us to identify novel modifiers and confirmed some of the previously mapped modifiers. Key genes involved mainly in metabolic and immunological processes were identified. Future steps in this analysis will be to identify regulatory elements – and possible epistatic effects – located in the mapped QTL.
Type: | Article |
---|---|
Title: | Genetic mapping of novel modifiers for ApcMin induced intestinal polyps’ development using the genetic architecture power of the collaborative cross mice |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1186/s12864-021-07890-x |
Publisher version: | https://doi.org/10.1186/s12864-021-07890-x |
Language: | English |
Additional information: | © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment |
URI: | https://discovery.ucl.ac.uk/id/eprint/10133111 |
Archive Staff Only
View Item |