Liu, X;
Xu, Y;
Zhang, W;
Tian, X;
(2021)
Multiple prosodic meanings are conveyed through separate pitch ranges: Evidence from perception of focus and surprise in Mandarin Chinese.
Cognitive, Affective, & Behavioral Neuroscience
, 21
pp. 1164-1175.
10.3758/s13415-021-00930-9.
Preview |
Text
Xu_Liu_etAl_CABN2021_accepted.pdf - Accepted Version Download (632kB) | Preview |
Abstract
F0 variation is a crucial feature in speech prosody, which can convey linguistic information such as focus and paralinguistic meanings such as surprise. How can multiple layers of information be represented with F0 in speech: are they divided into discrete layers of pitch or overlapped without clear divisions? We investigated this question by assessing pitch perception of focus and surprise in Mandarin Chinese. Seventeen native Mandarin listeners rated the strength of focus and surprise conveyed by the same set of synthetically manipulated sentences. An fMRI experiment was conducted to assess neural correlates of the listeners’ perceptual response to the stimuli. The results showed that behaviourally, the perceptual threshold for focus was 3 semitones and that for surprise was 5 semitones above the baseline. Moreover, the pitch range of 5-12 semitones above the baseline signalled both focus and surprise, suggesting a considerable overlap between the two types of prosodic information within this range. The neuroimaging data positively correlated with the variations in behavioural data. Also, a ceiling effect was found as no significant behavioural differences or neural activities were shown after reaching a certain pitch level for the perception of focus and surprise respectively. Together, the results suggest that different layers of prosodic information are represented in F0 through different pitch ranges: paralinguistic information is represented at a pitch range beyond that used by linguistic information. Meanwhile, the representation of paralinguistic information is achieved without obscuring linguistic prosody, thus allowing F0 to represent the two layers of information in parallel.
Archive Staff Only
View Item |