UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Suppression of Alzheimer-Associated Inflammation by Microglial Prostaglandin-E-2 EP4 Receptor Signaling

Woodling, NS; Wang, Q; Priyam, PG; Larkin, P; Shi, J; Johansson, JU; Zagol-Ikapitte, I; ... Andreasson, KI; + view all (2014) Suppression of Alzheimer-Associated Inflammation by Microglial Prostaglandin-E-2 EP4 Receptor Signaling. Journal of Neuroscience , 34 (17) pp. 5882-5894. 10.1523/JNEUROSCI.0410-14.2014. Green open access

[thumbnail of 5882.full.pdf]
Preview
Text
5882.full.pdf - Published Version

Download (2MB) | Preview

Abstract

A persistent and nonresolving inflammatory response to accumulating Aβ peptide species is a cardinal feature in the development of Alzheimer's disease (AD). In response to accumulating Aβ peptide species, microglia, the innate immune cells of the brain, generate a toxic inflammatory response that accelerates synaptic and neuronal injury. Many proinflammatory signaling pathways are linked to progression of neurodegeneration. However, endogenous anti-inflammatory pathways capable of suppressing Aβ-induced inflammation represent a relatively unexplored area. Here we report that signaling through the prostaglandin-E2 (PGE2) EP4 receptor potently suppresses microglial inflammatory responses to Aβ42 peptides. In cultured microglial cells, EP4 stimulation attenuated levels of Aβ42-induced inflammatory factors and potentiated phagocytosis of Aβ42. Microarray analysis demonstrated that EP4 stimulation broadly opposed Aβ42-driven gene expression changes in microglia, with enrichment for targets of IRF1, IRF7, and NF-κB transcription factors. In vivo, conditional deletion of microglial EP4 in APPSwe-PS1ΔE9 (APP-PS1) mice conversely increased inflammatory gene expression, oxidative protein modification, and Aβ deposition in brain at early stages of pathology, but not at later stages, suggesting an early anti-inflammatory function of microglial EP4 signaling in the APP-PS1 model. Finally, EP4 receptor levels decreased significantly in human cortex with progression from normal to AD states, suggesting that early loss of this beneficial signaling system in preclinical AD development may contribute to subsequent progression of pathology.

Type: Article
Title: Suppression of Alzheimer-Associated Inflammation by Microglial Prostaglandin-E-2 EP4 Receptor Signaling
Open access status: An open access version is available from UCL Discovery
DOI: 10.1523/JNEUROSCI.0410-14.2014
Publisher version: https://doi.org/10.1523/JNEUROSCI.0410-14.2014
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: A peptide; Alzheimer’s disease; microglia; neuroinflammation; PGE2 ; receptor
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment
URI: https://discovery.ucl.ac.uk/id/eprint/10132951
Downloads since deposit
79Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item