Sibley, M;
Ward, JM;
(2021)
A cell engineering approach to enzyme-based fed-batch fermentation.
Microbial Cell Factories
, 20
, Article 146. 10.1186/s12934-021-01634-y.
Preview |
Text
Ward_A cell engineering approach to enzyme-based fed-batch fermentation_VoR.pdf - Published Version Download (2MB) | Preview |
Abstract
BACKGROUND: A fundamental problem associated with E. coli fermentations is the difficulty in achieving high cell densities in batch cultures, attributed in large part to the production and accumulation of acetate through a phenomenon known as overflow metabolism when supplying enough glucose for the cell density desired. Although a fed-batch configuration is the standard method for reducing such issues, traditional fed-batch systems require components which become problematic when applying them at smaller scale. One alternative has been the development of a system whereby the enzymatic degradation of starch is used to release glucose at a controlled rate. However, to date, amylolytic enzymes have only been applied to the culture exogenously, whereas our goal is to design and construct a self-secreting amylolytic chassis capable of self-regulated enzyme-based fed-batch fermentation. RESULTS: A putative glucoamylase from C. violaceum has been cloned and expressed in E. coli BL21(DE3) and W3110, which exhibits significant glucose releasing amylolytic activity. Extracellular amylolytic activity was enhanced following a replacement of the enzymes native signal peptide with the DsbA signal sequence, contributing to a glucoamylase secreting strain capable of utilising starch as a sole carbon source in defined media. Introduction of PcstA, a glucose sensitive K12 compatible promoter, and the incorporation of this alongside C. violaceum glucoamylase in E. coli W3110, gave rise to increased cell densities in cultures grown on starch (OD600 ∼ 30) compared to those grown on an equivalent amount of glucose (OD600 ∼ 15). Lastly, a novel self-secreting enzyme-based fed-batch fermentation system was demonstrated via the simultaneous expression of the C. violaceum glucoamylase and a recombinant protein of interest (eGFP), resulting in a fourfold increase in yield when grown in media containing starch compared with the glucose equivalent. CONCLUSIONS: This study has developed, through the secretion of a previously uncharacterised bacterial glucoamylase, a novel amylolytic E. coli strain capable of direct starch to glucose conversion. The ability of this strain to achieve increased cell densities as well as an associated increase in recombinant protein yield when grown on starch compared with an equivalent amount of glucose, demonstrates for the first time a cell engineering approach to enzyme-based fed-batch fermentation.
Type: | Article |
---|---|
Title: | A cell engineering approach to enzyme-based fed-batch fermentation |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1186/s12934-021-01634-y |
Publisher version: | https://doi.org/10.1186/s12934-021-01634-y |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
Keywords: | Bacterial glucoamylase, Cell engineering for bioprocess, Enzyme-based fed-batch fermentation, Starch to glucose conversion |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/10132450 |
Archive Staff Only
View Item |