UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination

Vincenzi, M; Sullivan, M; Graur, O; Brout, D; Davis, TM; Frohmaier, C; Galbany, L; ... Wilkinson, RD; + view all (2021) The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination. Monthly Notices of the Royal Astronomical Society , 505 (2) pp. 2819-2839. 10.1093/mnras/stab1353. Green open access

[thumbnail of stab1353.pdf]
Preview
Text
stab1353.pdf - Published Version

Download (3MB) | Preview

Abstract

The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accurate photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection effects and contamination arising from core-collapse SNe in the photometric SN Ia samples. We use published SN time-series spectrophotometric templates, rates, luminosity functions, and empirical relationships between SNe and their host galaxies to construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy Survey (DES) 5-yr photometric SN sample, comparing our simulations of DES with the observed DES transient populations. We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data. We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation, we find that the predicted contamination varies from 7.2 to 11.7 per cent, with an average of 8.8 per cent and an r.m.s. of 1.1 per cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated systematic uncertainty.

Type: Article
Title: The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/mnras/stab1353
Publisher version: http://dx.doi.org/10.1093/mnras/stab1353
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: supernovae: general, cosmology: observations, GALAXY REDSHIFT SURVEY, IA SUPERNOVAE, SDSS-II, DATA RELEASE, LEGACY SURVEY, LIGHT-CURVES, STAR-FORMATION, DATA REDUCTION, SN 2005HK, I.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery.ucl.ac.uk/id/eprint/10132232
Downloads since deposit
Loading...
33Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
1.Russian Federation
3
2.United States
1
3.China
1
4.Canada
1

Archive Staff Only

View Item View Item