UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Knock-in models related to Alzheimer’s disease: synaptic transmission, plaques and the role of microglia

Benitez, DP; Jiang, S; Wood, J; Wang, R; Hall, CM; Peerboom, C; Wong, N; ... Cummings, DM; + view all (2021) Knock-in models related to Alzheimer’s disease: synaptic transmission, plaques and the role of microglia. Molecular Neurodegeneration , 16 (1) , Article 47. 10.1186/s13024-021-00457-0. Green open access

[thumbnail of Benitez et al.pdf]
Preview
Text
Benitez et al.pdf - Published Version

Download (5MB) | Preview

Abstract

Background: Microglia are active modulators of Alzheimer’s disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. Methods: AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer’s disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. Results: Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. Conclusions: Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer’s disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer’s disease.

Type: Article
Title: Knock-in models related to Alzheimer’s disease: synaptic transmission, plaques and the role of microglia
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s13024-021-00457-0
Publisher version: https://doi.org/10.1186/s13024-021-00457-0
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Keywords: Synaptic transmission; Synaptic plasticity; Microglia; Alzheimer’s disease; Gene expression; Neurodegeneration; TREM2; Ageing; Amyloid beta; Plaques
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UK Dementia Research Institute HQ
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology
URI: https://discovery.ucl.ac.uk/id/eprint/10131443
Downloads since deposit
79Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item