Menendez, Jorge Aurelio;
(2021)
A theory of sensorimotor learning for brain-machine interface control.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
electronic-copy.pdf - Accepted Version Download (20MB) | Preview |
Abstract
A remarkable demonstration of the flexibility of mammalian motor systems is primates’ ability to learn to control brain-machine interfaces (BMI’s). This constitutes a completely novel and artificial form of motor behavior, yet primates are capable of learning to control BMI’s under a wide range of conditions. BMI’s with carefully calibrated decoders, for example, can be learned with only minutes to hours of practice. With a few weeks of practice, even BMI’s with random decoders can be learned. What are the biological substrates of this learning process? This thesis proposes a simple theory of the computational principles underlying BMI learning. Through comprehensive numerical and formal analysis, we demonstrate that this theory can provide a unifying explanation for various disparate phenomena observed during BMI learning in three different BMI learning tasks. By explicitly modeling the underlying neural circuitry, the theory reveals an interpretation of these phenomena in terms of the biological non-linear dynamics of neural circuits.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | A theory of sensorimotor learning for brain-machine interface control |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science > CoMPLEX: Mat&Phys in Life Sci and Exp Bio |
URI: | https://discovery.ucl.ac.uk/id/eprint/10128477 |




Archive Staff Only
![]() |
View Item |