Vivekananda, U;
              
      
            
                Cao, C;
              
      
            
                Liu, W;
              
      
            
                Zhang, J;
              
      
            
                Rugg-Gunn, F;
              
      
            
                Walker, MC;
              
      
            
                Litvak, V;
              
      
            
            
          
      
            
            
            ... Zhan, S; + view all
            
          
      
        
        
        
    
  
(2021)
  The use of simultaneous stereo-electroencephalography and magnetoencephalography in localizing the epileptogenic focus in refractory focal epilepsy.
Brain Communications
, 3
       (2)
    
    
    
    , Article fcab072.     10.1093/braincomms/fcab072.
  
  
       
    
  
| Preview | Text fcab072.pdf - Published Version Download (943kB) | Preview | 
Abstract
Both magnetoencephalography and stereo-electroencephalography are used in presurgical epilepsy assessment, with contrasting advantages and limitations. It is not known whether simultaneous stereo-electroencephalography–magnetoencephalography recording confers an advantage over both individual modalities, in particular whether magnetoencephalography can provide spatial context to epileptiform activity seen on stereo-electroencephalography. Twenty-four adult and paediatric patients who underwent stereo-electroencephalography study for pre-surgical evaluation of drug-resistant focal epilepsy, were recorded using simultaneous stereo-electroencephalography–magnetoencephalography, of which 14 had abnormal interictal activity during recording. The 14 patients were divided into two groups; those with detected superficial (n = 7) and deep (n = 7) brain interictal activity. Interictal spikes were independently identified in stereo-electroencephalography and magnetoencephalography. Magnetoencephalography dipoles were derived using a distributed inverse method. There was no significant difference between stereo-electroencephalography and magnetoencephalography in detecting superficial spikes (P = 0.135) and stereo-electroencephalography was significantly better at detecting deep spikes (P = 0.002). Mean distance across patients between stereo-electroencephalography channel with highest average spike amplitude and magnetoencephalography dipole was 20.7 ± 4.4 mm. for superficial sources, and 17.8 ± 3.7 mm. for deep sources, even though for some of the latter (n = 4) no magnetoencephalography spikes were detected and magnetoencephalography dipole was fitted to a stereo-electroencephalography interictal activity triggered average. Removal of magnetoencephalography dipole was associated with 1 year seizure freedom in 6/7 patients with superficial source, and 5/6 patients with deep source. Although stereo-electroencephalography has greater sensitivity in identifying interictal activity from deeper sources, a magnetoencephalography source can be localized using stereo-electroencephalography information, thereby providing useful whole brain context to stereo-electroencephalography and potential role in epilepsy surgery planning.
Archive Staff Only
|  | View Item | 
 
                      
