Townsend, James;
(2021)
Lossless compression with latent variable models.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Townsend_Thesis.pdf Download (3MB) | Preview |
Abstract
We develop a simple and elegant method for lossless compression using latent variable models, which we call `bits back with asymmetric numeral systems' (BB-ANS). The method involves interleaving encode and decode steps, and achieves an optimal rate when compressing batches of data. We demonstrate it rstly on the MNIST test set, showing that state-of-the-art lossless compression is possible using a small variational autoencoder (VAE) model. We then make use of a novel empirical insight, that fully convolutional generative models, trained on small images, are able to generalize to images of arbitrary size, and extend BB-ANS to hierarchical latent variable models, enabling state-of-the-art lossless compression of full-size colour images from the ImageNet dataset. We describe `Craystack', a modular software framework which we have developed for rapid prototyping of compression using deep generative models.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Lossless compression with latent variable models |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10126530 |
Archive Staff Only
View Item |