UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Determining the Position and Orientation of In-body Medical Instruments Using Reactive Magnetic Field Mapping

Cavlu, Vedat; (2021) Determining the Position and Orientation of In-body Medical Instruments Using Reactive Magnetic Field Mapping. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Thesis-Final-Edition.pdf]
Preview
Text
Thesis-Final-Edition.pdf

Download (88MB) | Preview

Abstract

There has been a huge demand for localizing in-body medical instruments (IBMI), such as wireless capsule endoscope (WCE) and nasogastric tube (NGT). Some stud ies have been conducted to solve this issue over the last three decades. In these studies, they either used a permanent magnet (PM), a static current source (SCS), radio frequency (RF) fields or integration of two of these. The PM is a stable and reliable magnetic field source. However, due to the size restriction of the NGT and the WCE, only a small PM can be used. Subsequently, the small size issue causes low power delivery at the larger tracking distance. Also, the PM field is very susceptible to ambient noise, and the PM-based localization is not possible in ap plications requiring robotic actuation. Even though an SCS can be used to replace the permanent magnet, and thus the current level can be varied in relation to the dis tance for optimized power delivery, it requires a relatively high power to generate a higher strength magnetic field. Consequently, a more powerful and larger battery is needed to feed the circuit.Radio frequency field sources require high frequencies to achieve sufficient precision, but these frequencies undergo high attenuation in the body. Therefore, the low-frequency RF field is preferred 1 . In the near-field 2 , plane wave assumption of the far-field fails for localization methods since the waves in this region are spherical. Hence, the wave-front has to be formulated by both the range and the direction of arrival (DOA). The DOA requires the phase difference of neighbouring sensors to be calculated. However, if the operating wavelength is much larger than the distance between the source and the receiver, it is not feasible to compute the phase difference between the neigh bouring sensors. Thus, there are numerous algorithms in the literature to overcome these issues, such as MUSIC or ESPRIT which are either complicated or computa tionally expensive. In RF-based localization, generally the time of arrival (TA), the time differ ence of arrival (TDA), the angle of arrival (AOA) and the received signal strength (RSS) are widely used for localization. However, the TA and TDA require accu rate knowledge of field speed and good time synchronization. It is not possible to accurately know while travelling through the body tissues due to complexity of the tissues. The AOA is also impractical for intra-body applications owing to multiple reflections signal from the tissues, commonly known as the multipath effect. The RSS precision is dependent on good knowledge of power loss in complex body tis sues. Also, the RSS method requires accurate knowledge of the transmitted signal strength. However, the power of transmitted frequencies may vary due to the ca pacitive effect of human tissue on Resonant frequency of source, hence RSS-based techniques prove difficult in practice. Therefore, a novel method of mapping the magnetic field vector in the near field region is proposed. This magnetic field mapping (MFM) uses single-axis coils placed orthogonally with respect to a sensor plane (SP). These single-axis sensors pick up only the orthogonal component of the magnetic field, which varies as a function of the orientation of the source and distance to the source. Thus, using this information, the field strength captured by each sensor is mapped to its correspond ing position on the SP as pixels. Next, these field strengths with known positions are used to detect the location and orientation of the field source relative to the SP. MATLAB and CST Microwave simulation were conducted, and many laboratory experiments were performed, and we show that the novel technique not only over comes the issues faced in the methods mentioned above but also accomplishes an accurate source positioning with a precision of better than ± 0.5 cm in 3-D and orientation with a maximum error of ±5◦.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Determining the Position and Orientation of In-body Medical Instruments Using Reactive Magnetic Field Mapping
Event: University College London
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10125541
Downloads since deposit
28Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item