Cadiou, C;
Pontzen, A;
Peiris, HV;
(2021)
Angular momentum evolution can be predicted from cosmological initial conditions.
Monthly Notices of the Royal Astronomical Society
, 502
(4)
pp. 5480-5486.
10.1093/mnras/stab440.
Preview |
Text
stab440.pdf Download (1MB) | Preview |
Abstract
The angular momentum of dark matter haloes controls their spin magnitude and orientation, which in turn influences the galaxies therein. However, the process by which dark matter haloes acquire angular momentum is not fully understood; in particular, it is unclear whether angular momentum growth is stochastic. To address this question, we extend the genetic modification technique to allow control over the angular momentum of any region in the initial conditions. Using this technique to produce a sequence of modified simulations, we can then investigate whether changes to the angular momentum of a specified region in the evolved universe can be accurately predicted from changes in the initial conditions alone. We find that the angular momentum in regions with modified initial conditions can be predicted between 2 and 4 times more accurately than expected from applying tidal torque theory. This result is masked when analysing the angular momentum of haloes, because particles in the outskirts of haloes dominate the angular momentum budget. We conclude that the angular momentum of Lagrangian patches is highly predictable from the initial conditions, with apparent chaotic behaviour being driven by stochastic changes to the arbitrary boundary defining the halo.
Type: | Article |
---|---|
Title: | Angular momentum evolution can be predicted from cosmological initial conditions |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1093/mnras/stab440 |
Publisher version: | http://dx.doi.org/10.1093/mnras/stab440 |
Language: | English |
Additional information: | Copyright 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/10123120 |



1. | ![]() | 3 |
2. | ![]() | 2 |
3. | ![]() | 1 |
4. | ![]() | 1 |
Archive Staff Only
![]() |
View Item |