Sun, W-Y;
Tyurin, VA;
Mikulska-Ruminska, K;
Shrivastava, IH;
Anthonymuthu, TS;
Zhai, Y-J;
Pan, M-H;
... Kagan, VE; + view all
(2021)
Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal.
Nature Chemical Biology
, 17
pp. 465-476.
10.1038/s41589-020-00734-x.
Preview |
Text
Nat Chem Biol_PhospholipaseiPLAbeta.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca^{2+} -independent phospholipase A2β (iPLA2β, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA_{2}β averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson’s disease (PD)-associated mutation (fPD^{R747W}) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9^{R748W/R748W} mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant Snca^{A53T} mice, with decreased iPLA2β expression and a PD-relevant phenotype. Thus, iPLA_{2}β is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.
Archive Staff Only
View Item |