Changeat, Q;
Edwards, B;
(2021)
The hubble WFC3 emission spectrum of the extremely hot jupiter KELT-9b.
The Astrophysical Journal Letters
, 907
(1)
, Article L22. 10.3847/2041-8213/abd84f.
Preview |
Text
Changeat_VoRChangeat_2021_ApJL_907_L22.pdf - Published Version Download (1MB) | Preview |
Abstract
Recent studies of ultra-hot Jupiters suggested that their atmospheres could have thermal inversions due to the presence of optical absorbers such as titanium oxide (TiO), vanadium oxide (VO), iron hydride (FeH), and other metal hydride/oxides. However, it is expected that these molecules would thermally dissociate at extremely high temperatures, thus leading to featureless spectra in the infrared. KELT-9 b, the hottest exoplanet discovered so far, is thought to belong to this regime and host an atmosphere dominated by neutral hydrogen from dissociation and atomic/ionic species. Here, we analyzed the eclipse spectrum obtained using the Hubble Space Telescope's Wide Field Camera 3 and, by utilizing the atmospheric retrieval code TauREx3, found that the spectrum is consistent with the presence of molecular species and is poorly fitted by a simple blackbody. In particular, we find that a combination of TiO, VO, FeH, and H- provides the best fit when considering Hubble Space Telescope (HST), Spitzer, and TESS data sets together. Aware of potential biases when combining instruments, we also analyzed the HST spectrum alone and found that TiO and VO only were needed in this case. These findings paint a more complex picture of the atmospheres of ultra-hot planets than previously thought.
Type: | Article |
---|---|
Title: | The hubble WFC3 emission spectrum of the extremely hot jupiter KELT-9b |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3847/2041-8213/abd84f |
Publisher version: | https://doi.org/10.3847/2041-8213/abd84f |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/10122041 |



1. | ![]() | 1 |
2. | ![]() | 1 |
3. | ![]() | 1 |
4. | ![]() | 1 |
Archive Staff Only
![]() |
View Item |