UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

'Dark matter', second waves and epidemiological modelling

Friston, K; Costello, A; Pillay, D; (2020) 'Dark matter', second waves and epidemiological modelling. BMJ Glob Health , 5 (12) , Article e003978. 10.1136/bmjgh-2020-003978. Green open access

[thumbnail of e003978.full.pdf]
Preview
Text
e003978.full.pdf - Published Version

Download (2MB) | Preview

Abstract

Recent reports using conventional Susceptible, Exposed, Infected and Removed models suggest that the next wave of the COVID-19 pandemic in the UK could overwhelm health services, with fatalities exceeding the first wave. We used Bayesian model comparison to revisit these conclusions, allowing for heterogeneity of exposure, susceptibility and transmission. We used dynamic causal modelling to estimate the evidence for alternative models of daily cases and deaths from the USA, the UK, Brazil, Italy, France, Spain, Mexico, Belgium, Germany and Canada over the period 25 January 2020 to 15 June 2020. These data were used to estimate the proportions of people (i) not exposed to the virus, (ii) not susceptible to infection when exposed and (iii) not infectious when susceptible to infection. Bayesian model comparison furnished overwhelming evidence for heterogeneity of exposure, susceptibility and transmission. Furthermore, both lockdown and the build-up of population immunity contributed to viral transmission in all but one country. Small variations in heterogeneity were sufficient to explain large differences in mortality rates. The best model of UK data predicts a second surge of fatalities will be much less than the first peak. The size of the second wave depends sensitively on the loss of immunity and the efficacy of Find-Test-Trace-Isolate-Support programmes. In summary, accounting for heterogeneity of exposure, susceptibility and transmission suggests that the next wave of the SARS-CoV-2 pandemic will be much smaller than conventional models predict, with less economic and health disruption. This heterogeneity means that seroprevalence underestimates effective herd immunity and, crucially, the potential of public health programmes.

Type: Article
Title: 'Dark matter', second waves and epidemiological modelling
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1136/bmjgh-2020-003978
Publisher version: https://doi.org/10.1136/bmjgh-2020-003978
Language: English
Additional information: This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Infection and Immunity
URI: https://discovery.ucl.ac.uk/id/eprint/10118358
Downloads since deposit
72Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item