UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Mobile edge computing in wireless communication networks: design and optimization

Hu, Xiaoyan; (2020) Mobile edge computing in wireless communication networks: design and optimization. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of XiaoyanHu_PhD_Thesis.pdf]
Preview
Text
XiaoyanHu_PhD_Thesis.pdf

Download (2MB) | Preview

Abstract

This dissertation studies the design and optimization of applying mobile edge computing (MEC) in three kinds of advanced wireless networks, which is motivated by three non-trivial but not thoroughly studied topics in the existing MEC-related literature. First, we study the application of MEC in wireless powered cooperation-assisted systems. The technology of wireless power transfer (WPT) used at the access point (AP) is capable of providing sustainable energy supply for resource-limited user equipment (UEs) to support computation offloading, but also introduces the double-near-far effect into wireless powered communication networks (WPCNs). By leveraging cooperation among near-far users, the system performance can be highly improved through effectively suppressing the double-near-far effect in WPCNs. Then, we consider the application of MEC in the unmanned aerial vehicle (UAV)-assisted relaying systems to make better use of the flexible features of UAV as well as its computing resources. The adopted UAV not only acts as an MEC server to help compute UEs' offloaded tasks but also a relay to forward UEs' offloaded tasks to the AP, thus such kind of cooperation between the UAV and the AP can take the advantages of both sides so as to improve the system performance. Last, heterogeneous cellular networks (HetNets) with the coexistence of MEC and central cloud computing (CCC) are studied to show the complementary and promotional effects between MEC and CCC. The small base stations (SBSs) empowered by edge clouds offer limited edge computing services for UEs, whereas the macro base station (MBS) provides high-performance CCC services for UEs via restricted multiple-input multiple-output (MIMO) backhauls to their associated SBSs. With further considering the case with massive MIMO backhauls, the system performance can be further improved while significantly reducing the computational complexity. In the aforementioned three advanced MEC systems, we mainly focus on minimizing the energy consumption of the systems subject to proper latency constraints, due to the fact that energy consumption and latency are regarded as two important metrics for measuring the performance of MEC-related works. Effective optimization algorithms are proposed to solve the corresponding energy minimization problems, which are further validated by numerical results.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Mobile edge computing in wireless communication networks: design and optimization
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10117795
Downloads since deposit
1,183Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item