Nicolaou, G;
Wicks, RT;
Rae, IJ;
Kataria, DO;
(2020)
Evaluating the Performance of a Plasma Analyzer for a Space Weather Monitor Mission Concept.
Space Weather
, 18
(12)
, Article e2020SW002559. 10.1029/2020sw002559.
Preview |
Text
2020SW002559.pdf - Published Version Download (18MB) | Preview |
Abstract
We use historical analysis of solar wind plasma and coronal mass ejections to define the range of performance required for an ion analyzer for future space weather monitoring missions. We adopt the design of a top hat electrostatic analyzer, capable of measuring the plasma protons and constructing their three‐dimensional distribution functions. The design is based on previous heritage instruments and allows monitoring of extreme space weather events. In order to evaluate the future observations and their analysis methods, we model the expected response of the instrument in simulated plasma conditions. We evaluate a novel analysis method which can determine on board the plasma bulk properties, such as density, velocity, and temperature from the statistical moments of the observed velocity distribution functions of the plasma particles. We quantify the accuracy of the derived parameters critical for space weather purposes, by comparing them with the corresponding input solar wind parameters. In order to validate the instrument design, we examine the accuracy over the entire range of the input parameters we expect to observe in solar wind, from benign to extreme space weather conditions. We also use realistic parameters of fast solar wind streams and interplanetary coronal mass ejections as measured by the Advanced Composition Explorer spacecraft, to investigate the performance of the example instrument and the accuracy of the analysis. We discuss the achieved accuracy and its relevance to space weather monitoring concepts. We address sources of significant errors, and we demonstrate potential improvements by using a fitting analysis method to derive the results.
Type: | Article |
---|---|
Title: | Evaluating the Performance of a Plasma Analyzer for a Space Weather Monitor Mission Concept |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1029/2020sw002559 |
Publisher version: | https://doi.org/10.1029/2020sw002559 |
Language: | English |
Additional information: | Copyright © 2020. The Authors. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | instrumentation, models, solar wind, space weather monitor, CMES, streams |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics > Advanced Instrumentation Systems |
URI: | https://discovery.ucl.ac.uk/id/eprint/10116876 |
1. | United States | 12 |
2. | United Kingdom | 11 |
3. | India | 11 |
4. | France | 5 |
5. | Russian Federation | 5 |
6. | China | 3 |
7. | Serbia | 2 |
8. | Korea, Republic of | 2 |
9. | Indonesia | 1 |
10. | Germany | 1 |
Archive Staff Only
View Item |