UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Low-latency mix networks for anonymous communication

Piotrowska, Ania M; (2020) Low-latency mix networks for anonymous communication. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of thesis.pdf]
Preview
Text
thesis.pdf - Accepted Version

Download (13MB) | Preview

Abstract

Every modern online application relies on the network layer to transfer information, which exposes the metadata associated with digital communication. These distinctive characteristics encapsulate equally meaningful information as the content of the communication itself and allow eavesdroppers to uniquely identify users and their activities. Hence, by exposing the IP addresses and by analyzing patterns of the network traffic, a malicious entity can deanonymize most online communications. While content confidentiality has made significant progress over the years, existing solutions for anonymous communication which protect the network metadata still have severe limitations, including centralization, limited security, poor scalability, and high-latency. As the importance of online privacy increases, the need to build low-latency communication systems with strong security guarantees becomes necessary. Therefore, in this thesis, we address the problem of building multi-purpose anonymous networks that protect communication privacy. To this end, we design a novel mix network Loopix, which guarantees communication unlinkability and supports applications with various latency and bandwidth constraints. Loopix offers better security properties than any existing solution for anonymous communications while at the same time being scalable and low-latency. Furthermore, we also explore the problem of active attacks and malicious infrastructure nodes, and propose a Miranda mechanism which allows to efficiently mitigate them. In the second part of this thesis, we show that mix networks may be used as a building block in the design of a private notification system, which enables fast and low-cost online notifications. Moreover, its privacy properties benefit from an increasing number of users, meaning that the system can scale to millions of clients at a lower cost than any alternative solution.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Low-latency mix networks for anonymous communication
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10116805
Downloads since deposit
768Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item