Poblador Rodriguez, E;
Moser, P;
Auno, S;
Eckstein, K;
Dymerska, B;
van der Kouwe, A;
Gruber, S;
... Bogner, W; + view all
(2020)
Real‐time motion and retrospective coil sensitivity correction for CEST using volumetric navigators (vNavs) at 7T.
Magnetic Resonance in Medicine
10.1002/mrm.28555.
(In press).
Preview |
Text
mrm.28555.pdf - Published Version Download (2MB) | Preview |
Abstract
PURPOSE: To explore the impact of temporal motion-induced coil sensitivity changes on CEST-MRI at 7T and its correction using interleaved volumetric EPI navigators, which are applied for real-time motion correction. METHODS: Five healthy volunteers were scanned via CEST. A 4-fold correction pipeline allowed the mitigation of (1) motion, (2) motion-induced coil sensitivity variations, Δ B 1 - , (3) motion-induced static magnetic field inhomogeneities, ΔB0 , and (4) spatially varying transmit RF field fluctuations, ΔB 1 + . Four CEST measurements were performed per session. For the first 2, motion correction was turned OFF and then ON in absence of voluntary motion, whereas in the other 2 controlled head rotations were performed. During post-processing Δ B 1 - was removed additionally for the motion-corrected cases, resulting in a total of 6 scenarios to be compared. In all cases, retrospective ∆B0 and - ΔB 1 + corrections were performed to compute artifact-free magnetization transfer ratio maps with asymmetric analysis (MTRasym ). RESULTS: Dynamic Δ B 1 - correction successfully mitigated signal deviations caused by head motion. In 2 frontal lobe regions of volunteer 4, induced relative signal errors of 10.9% and 3.9% were reduced to 1.1% and 1.0% after correction. In the right frontal lobe, the motion-corrected MTRasym contrast deviated 0.92%, 1.21%, and 2.97% relative to the static case for Δω = 1, 2, 3 ± 0.25 ppm. The additional application of Δ B 1 - correction reduced these deviations to 0.10%, 0.14%, and 0.42%. The fully corrected MTRasym values were highly consistent between measurements with and without intended head rotations. CONCLUSION: Temporal Δ B 1 - cause significant CEST quantification bias. The presented correction pipeline including the proposed retrospective Δ B 1 - correction significantly reduced motion-related artifacts on CEST-MRI.
Type: | Article |
---|---|
Title: | Real‐time motion and retrospective coil sensitivity correction for CEST using volumetric navigators (vNavs) at 7T |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/mrm.28555 |
Publisher version: | https://doi.org/10.1002/mrm.28555 |
Language: | English |
Additional information: | Copyright © 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | chemical exchange saturation transfer, coil sensitivity, inhomogeneities, motion correction, static magnetic field, ultra-high field magnetic resonance |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience |
URI: | https://discovery.ucl.ac.uk/id/eprint/10115186 |
Archive Staff Only
View Item |