UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Monad Composition via Preservation of Algebras

Parlant, Louis; (2020) Monad Composition via Preservation of Algebras. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Thesis_Louis_Parlant_UCL_upload.pdf]
Preview
Text
Thesis_Louis_Parlant_UCL_upload.pdf - Accepted Version

Download (5MB) | Preview

Abstract

Monads are a central object of category theory and constitute crucial tools for many areas of Computer Science, from semantics of computation to functional programming. An important aspect of monads is their correspondence with algebraic theories (their ‘presentation’). As demonstrated by the history of this field, composing monads is a challenging task: the literature contains numerous mistakes and features no general method. One categorical construct, named ‘distributive law’ allows this composition, but its existence is not guaranteed. This thesis addresses the question of monad composition by presenting a method for the construction of distributive laws. For this purpose, we introduce a notion of preservation of algebraic features: considering an arbitrary algebra for the theory presenting a monad S, we examine whether its structure is preserved when applying another monad T . In the case of success, it allows us to construct a distributive law and to compose our monads into T S. In order to develop a general framework, we focus on the class of monoidal monads. If T is monoidal, the algebraic operations presenting S are preserved in a canonical fashion; it remains to examine whether the equations presenting S are also preserved by T . As it turns out, the preservation of an equation depends on the layout of its variables: if each variable appears once on each side, the considered equation is automatically preserved by a monoidal monad. On the other hand, if a variable is duplicated or only appears on one side, preservation is not systematic. The main results of this thesis connect the preservation of such equations with structural properties of monads. In the case where T does not preserve an equation presenting S, our distributive law cannot be built; we provide a series of methods to slightly modify our monads and overcome this issue, and we investigate some less conventional distributive laws. Finally, we consider the presentations of both S and T and revisit our construction of distributive laws, this time with an algebraic point of view. Overall, this thesis presents a general approach to the problem of monad composition by relating categorical properties of monads with preservation of algebras.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Monad Composition via Preservation of Algebras
Event: University College London
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10112228
Downloads since deposit
408Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item