Whitehead, K;
Meek, J;
Fabrizi, L;
Smith, BA;
(2020)
Long-range temporal organisation of limb movement kinematics in human neonates.
Clinical Neurophysiology Practice
, 5
pp. 194-198.
10.1016/j.cnp.2020.07.007.
Preview |
Text
Whitehead_Revised kinematics paper_BAS_10.7.20.pdf - Published Version Download (617kB) | Preview |
Abstract
Objective: Movement provides crucial sensorimotor information to the developing brain, evoking somatotopic cortical EEG activity. Indeed, temporal-spatial organisation of these movements, including a diverse repertoire of accelerations and limb combinations (e.g. unilateral progressing to bilateral), predicts positive sensorimotor outcomes. However, in current clinical practice, movements in human neonates are qualitatively characterised only during brief periods (a few minutes) of wakefulness, meaning that the vast majority of sensorimotor experience remains unsampled. Here our objective was to quantitatively characterise the long-range temporal organisation of the full repertoire of newborn movements, over multi-hour recordings. Methods: We monitored motor activity across 2–4 h in 11 healthy newborn infants (median 1 day old), who wore limb sensors containing synchronised tri-axial accelerometers and gyroscopes. Movements were identified using acceleration and angular velocity, and their organisation across the recording was characterised using cluster analysis and spectral estimation. Results: Movement occurrence was periodic, with a 1-hour cycle. Peaks in movement occurrence were associated with higher acceleration, and a higher proportion of movements being bilateral. Conclusions: Neonatal movement occurrence is cyclical, with periods consistent with sleep-wake behavioural architecture. Movement kinematics are organised by these fluctuations in movement occurrence. Recordings that exceed 1-hour are necessary to capture the long-range temporal organisation of the full repertoire of newborn limb movements. Significance: Future work should investigate the prognostic value of combining these movement recordings with synchronised EEG, in at-risk infants.
Type: | Article |
---|---|
Title: | Long-range temporal organisation of limb movement kinematics in human neonates |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.cnp.2020.07.007 |
Publisher version: | https://doi.org/10.1016/j.cnp.2020.07.007 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | Motor, Somatosensory, Proprioception |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health > Neonatology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10111224 |
Archive Staff Only
![]() |
View Item |