UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

A microfluidic-based investigation of bacterial attachment in ureteral stents

De Grazia, A; LuTheryn, G; Meghdadi, A; Mosayyebi, A; Espinosa-Ortiz, EJ; Gerlach, R; Carugo, D; (2020) A microfluidic-based investigation of bacterial attachment in ureteral stents. Micromachines , 11 (4) , Article 408. 10.3390/MI11040408. Green open access

[thumbnail of micromachines-11-00408-v2.pdf]
Preview
Text
micromachines-11-00408-v2.pdf - Published Version

Download (3MB) | Preview

Abstract

Obstructions of the ureter lumen can originate from intrinsic or extrinsic factors, such as kidney stones, tumours, or strictures. These can affect the physiological flow of urine from the kidneys to the bladder, potentially causing infection, pain, and kidney failure. To overcome these complications, ureteral stents are often deployed clinically in order to temporarily re-establish urinary flow. Despite their clinical benefits, stents are prone to encrustation and biofilm formation that lead to reduced quality of life for patients; however, the mechanisms underlying the formation of crystalline biofilms in stents are not yet fully understood. In this study, we developed microfluidic-based devices replicating the urodynamic field within different configurations of an occluded and stented ureter. We employed computational fluid dynamic simulations to characterise the flow dynamic field within these models and investigated bacterial attachment (Pseudomonas fluorescens) by means of crystal violet staining and fluorescence microscopy. We identified the presence of hydrodynamic cavities in the vicinity of a ureteric occlusion, which were characterised by low levels of wall shear stress (WSS < 40 mPa), and observed that initiation of bacterial attachment occurred in these specific regions of the stented ureter. Notably, the bacterial coverage area was directly proportional to the number of cavities present in the model. Fluorescence microscopy confirmed that the number density of bacteria was greater within cavities (3 bacteria•mm-2) when compared to side-holes of the stent (1 bacterium•mm-2) or its luminal surface (0.12 bacteria•mm-2). These findings informed the design of a novel technological solution against bacterial attachment, which reduces the extent of cavity flow and increases wall shear stress over the stent's surface.

Type: Article
Title: A microfluidic-based investigation of bacterial attachment in ureteral stents
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/MI11040408
Publisher version: https://doi.org/10.3390/mi11040408
Language: English
Additional information: © 2020 by the Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Keywords: ureteral obstruction; ureteral stent; microfluidics; stent-on-a-chip; bacterial attachment; biofilm formation; cavity flow; wall shear stress; CFD simulations
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy > Pharmaceutics
URI: https://discovery.ucl.ac.uk/id/eprint/10109384
Downloads since deposit
Loading...
43Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item