Nunez do Rio, JM;
Sen, P;
Rasheed, R;
Bagchi, A;
Nicholson, L;
Dubis, AM;
Bergeles, C;
(2020)
Deep Learning-Based Segmentation and Quantification of Retinal Capillary Non-Perfusion on Ultra-Wide-Field Retinal Fluorescein Angiography.
Journal of Clinical Medicine
, 9
(8)
, Article 2537. 10.3390/jcm9082537.
Preview |
Text
jcm-09-02537.pdf - Published Version Download (9MB) | Preview |
Abstract
Reliable outcome measures are required for clinical trials investigating novel agents for preventing progression of capillary non-perfusion (CNP) in retinal vascular diseases. Currently, accurate quantification of topographical distribution of CNP on ultrawide field fluorescein angiography (UWF-FA) by retinal experts is subjective and lack standardisation. A U-net style network was trained to extract a dense segmentation of CNP from a newly created dataset of 75 UWF-FA images. A subset of 20 images was also segmented by a second expert grader for inter-grader reliability evaluation. Further, a circular grid centred on the FAZ was used to provide standardised CNP distribution analysis. The model for dense segmentation was five-fold cross-validated achieving area under the receiving operating characteristic of 0.82 (0.03) and area under precision-recall curve 0.73 (0.05). Inter-grader assessment on the 20 image subset achieves: precision 59.34 (10.92), recall 76.99 (12.5), and dice similarity coefficient (DSC) 65.51 (4.91), and the centred operating point of the automated model reached: precision 64.41 (13.66), recall 70.02 (16.2), and DSC 66.09 (13.32). Agreement of CNP grid assessment reached: Kappa 0.55 (0.03), perfused intraclass correlation (ICC) 0.89 (0.77, 0.93), non-perfused ICC 0.86 (0.73, 0.92), inter-grader agreement of CNP grid assessment values are Kappa 0.43 (0.03), perfused ICC 0.70 (0.48, 0.83), non-perfused ICC 0.71 (0.48, 0.83). Automated dense segmentation of CNP in UWF-FA images achieves performance levels comparable to inter-grader agreement values. A grid placed on the deep learning-based automatic segmentation of CNP generates a reliable and quantifiable method of measurement of CNP, to overcome the subjectivity of human graders.
Type: | Article |
---|---|
Title: | Deep Learning-Based Segmentation and Quantification of Retinal Capillary Non-Perfusion on Ultra-Wide-Field Retinal Fluorescein Angiography |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3390/jcm9082537 |
Publisher version: | https://doi.org/10.3390/jcm9082537 |
Language: | English |
Additional information: | © 2020 by the Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Keywords: | retinal non-perfusion; fluorescein angiography; image segmentation |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/10107463 |
Archive Staff Only
View Item |