King, T;
Benson, P;
De Siena, L;
Vinciguerra, S;
(2017)
Investigating the apparent seismic diffusivity of near-receiver geology at mount St. Helens Volcano, USA.
Geosciences
, 7
(4)
, Article 130. 10.3390/geosciences7040130.
Preview |
Text
King 2018 Geosciences.pdf - Published Version Download (7MB) | Preview |
Abstract
We present an expanded approach of the diffusive approximation to map strongly scattering geological structures in volcanic environments using seismic coda intensities and a diffusive approximation. Seismic data from a remarkably consistent hydrothermal source of Long-Period (LP) earthquakes, that was active during the late 2004 portion of the 2004–2008 dome building eruption of Mount St. Helens Volcano, are used to obtain coefficient values for diffusion and attenuation, and describe the rate at which seismic energy radiates into the surrounding medium. The results are then spatially plotted as a function of near-receiver geology to generate maps of near-surface geological and geophysical features. They indicate that the diffusion coefficient is a marker of the near-receiver geology, while the attenuation coefficients are sensitive to deeper volcanic structures. As previously observed by other studies, two main scattering regimes affect the coda envelopes: a diffusive, multiple-scattering regime close to the volcanic edifice and a much weaker, single-to-multiple scattering regime at higher source-receiver offsets. Within the diffusive, multiple-scattering regime, the spatial variations of the diffusion coefficient are sufficiently robust to show the features of laterally-extended, coherent, shallow geological structures.
Type: | Article |
---|---|
Title: | Investigating the apparent seismic diffusivity of near-receiver geology at mount St. Helens Volcano, USA |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3390/geosciences7040130 |
Publisher version: | https://doi.org/10.3390/geosciences7040130 |
Language: | English |
Additional information: | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Keywords: | volcanology; seismic attenuation; coda waves; diffusion coefficient; near-receiver geology |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10098148 |
Archive Staff Only
View Item |