UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Activity or Connectivity? Evaluating neurofeedback training in Huntington's disease

Papoutsi, M; Magerkurth, J; Josephs, O; Pépés, S; Ibitoye, T; Reilmann, R; Hunt, N; ... Tabrizi, S; + view all (2018) Activity or Connectivity? Evaluating neurofeedback training in Huntington's disease. BioRxiv: Cold Spring Harbor, NY, USA. Green open access

[thumbnail of Papoutsi_481903v2.full.pdf]
Preview
Text
Papoutsi_481903v2.full.pdf

Download (2MB) | Preview

Abstract

Non-invasive methods, such as neurofeedback training (NFT), could support cognitive symptom management in Huntington’s disease (HD) by targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the feasibility of NFT in HD by examining two different methods, activity and connectivity real-time fMRI NFT. Thirty-two HD gene-carriers completed 16 runs of NFT training, using an optimized real-time fMRI protocol. Participants were randomized into four groups, two treatment groups, one receiving neurofeedback derived from the activity of the Supplementary Motor Area (SMA), and another receiving neurofeedback based on the correlation of SMA and left striatum activity (connectivity NFT), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during NFT training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the participants’ ability to upregulate NFT target levels without feedback (near transfer), as well as by examining change in objective, a-priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months after training. We found that the treatment group had significantly higher NFT target levels during the training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group compared to controls, or a difference between the two NFT methods. We also did not find evidence in support of a relationship between change in cognitive and psychomotor function and NFT learning success. We conclude that although there is evidence that NFT can be used to guide participants to regulate the activity and connectivity of specific regions in the brain, evidence regarding transfer of learning and clinical benefit was not robust. Although the intervention is non-invasive, given the costs and absence of reliable evidence of clinical benefit, we cannot recommend real-time fMRI NFT as a potential intervention in HD.

Type: Working / discussion paper
Title: Activity or Connectivity? Evaluating neurofeedback training in Huntington's disease
Open access status: An open access version is available from UCL Discovery
DOI: 10.1101/481903
Publisher version: https://doi.org/10.1101/481903
Language: English
Additional information: The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute > EDI Craniofacial and Development Sci
URI: https://discovery.ucl.ac.uk/id/eprint/10097200
Downloads since deposit
45Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item