UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Statistical methods for NHS incident reporting data

Mainey, Christopher Paul; (2020) Statistical methods for NHS incident reporting data. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of ChrisMaineyThesis_final_censored.pdf]
Preview
Text
ChrisMaineyThesis_final_censored.pdf - Accepted Version

Download (6MB) | Preview

Abstract

The National Reporting and Learning System (NRLS) is the English and Welsh NHS’ national repository of incident reports from healthcare. It aims to capture details of incident reports, at national level, and facilitate clinical review and learning to improve patient safety. These incident reports range from minor ‘near-misses’ to critical incidents that may lead to severe harm or death. NRLS data are currently reported as crude counts and proportions, but their major use is clinical review of the free-text descriptions of incidents. There are few well-developed quantitative analysis approaches for NRLS, and this thesis investigates these methods. A literature review revealed a wealth of clinical detail, but also systematic constraints of NRLS’ structure, including non-mandatory reporting, missing data and misclassification. Summary statistics for reports from 2010/11 – 2016/17 supported this and suggest NRLS was not suitable for statistical modelling in isolation. Modelling methods were advanced by creating a hybrid dataset using other sources of hospital casemix data from Hospital Episode Statistics (HES). A theoretical model was established, based on ‘exposure’ variables (using casemix proxies), and ‘culture’ as a random-effect. The initial modelling approach examined Poisson regression, mixture and multilevel models. Overdispersion was significant, generated mainly by clustering and aggregation in the hybrid dataset, but models were chosen to reflect these structures. Further modelling approaches were examined, using Generalized Additive Models to smooth predictor variables, regression tree-based models including Random Forests, and Artificial Neural Networks. Models were also extended to examine a subset of death and severe harm incidents, exploring how sparse counts affect models. Text mining techniques were examined for analysis of incident descriptions and showed how term frequency might be used. Terms were used to generate latent topics models used, in-turn, to predict the harm level of incidents. Model outputs were used to create a ‘Standardised Incident Reporting Ratio’ (SIRR) and cast this in the mould of current regulatory frameworks, using process control techniques such as funnel plots and cusum charts. A prototype online reporting tool was developed to allow NHS organisations to examine their SIRRs, provide supporting analyses, and link data points back to individual incident reports.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Statistical methods for NHS incident reporting data
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
Keywords: NHS, healthcare, patient safety, incident reporting, statistics, machine learning, text mining, NRLS
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health
URI: https://discovery.ucl.ac.uk/id/eprint/10094736
Downloads since deposit
1,110Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item