UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Using molecular dynamics and enhanced sampling techniques to find cryptic druggable pockets in proteins of pharmaceutical interest

Oleinikovas, Vladimiras; (2020) Using molecular dynamics and enhanced sampling techniques to find cryptic druggable pockets in proteins of pharmaceutical interest. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Oleinikovas_10093319_Thesis_redacted.pdf]
Preview
Text
Oleinikovas_10093319_Thesis_redacted.pdf

Download (44MB) | Preview

Abstract

Cryptic pockets are sites on protein targets that are hidden in the unliganded form and only become apparent when drugs bind. These sites provide a promising alternative to classical substrate binding sites for drug development, especially when the latter are not druggable. In this thesis I investigate the nature and dynamical properties of cryptic sites in a number of pharmacologically relevant targets, while comparing the efficacy of various simulation-based approaches in discovering them. I found that the studied cryptic sites do not correspond to local minima in the computed conformational free-energy landscape of the unliganded proteins. They thus promptly close in all of the molecular dynamics simulations performed, irrespective of the force-field used. Temperature-based enhanced sampling approaches, such as parallel tempering, do not improve the situation, as the entropic term does not help in the opening of the sites. The use of fragment probes helps, as in long simulations occasionally it leads to the opening and binding to the cryptic sites. The observed mechanism of cryptic site formation is suggestive of interplay between two classical mechanisms: induced-fit and conformational selection. Employing this insight, I developed a novel Hamiltonian replica exchange-based method SWISH (sampling water interfaces through scaled Hamiltonians), which combined with probes resulted in a promising general approach for cryptic site discovery. In addition, we revisit the rather ill-defined concept of the cryptic pockets in order to propose an alternative measurable interpretation. I outline how the new practical definition can be applied to the ligandable targets reported in the PDB, in order to provide a consistent data-driven view on crypticity and how it may impact the drug discovery. This thesis presents a comprehensive study of the cryptic pocket phenomenon: from understanding the nature of their formation to novel detection methodology, and towards understanding their global significance in drug discovery.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Using molecular dynamics and enhanced sampling techniques to find cryptic druggable pockets in proteins of pharmaceutical interest
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. - Some third party copyright material has been removed from this e-thesis.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
URI: https://discovery.ucl.ac.uk/id/eprint/10093319
Downloads since deposit
Loading...
0Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item