UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Design and development of an implantable biohybrid device for muscle stimulation following lower motor neuron injury

Angola Rojas, Mariann Andrea; (2020) Design and development of an implantable biohybrid device for muscle stimulation following lower motor neuron injury. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of MAngolaRojas_Thesis_final.pdf]
Preview
Text
MAngolaRojas_Thesis_final.pdf - Accepted Version

Download (8MB) | Preview

Abstract

In the absence of innervation caused by complete lower motor neuron injuries, skeletal muscle undergoes an inexorable course of degeneration and atrophy. The most apparent and debilitating clinical outcome of denervation is the immediate loss of voluntary use of muscle. However, these injuries are associated with secondary complications of bones, skin and cardiovascular system that, if untreated, may be fatal. Electrical stimulation has been implemented as a clinical rehabilitation technique in patients with denervated degenerated muscles offering remarkable improvements in muscle function. Nevertheless, this approach has limitations and side effects triggered by the delivery of high intensity electrical pulses. Combining innovative approaches in the fields of cell therapy and implanted electronics offers the opportunity to develop a biohybrid device to stimulate muscles in patients with lower motor neuron injuries. Incorporation of stem cell-derived motor neurons into implantable electrodes, could allow muscles to be stimulated in a physiological manner and circumvent problems associated with direct stimulation of muscle. The hypothesis underpinning this project is that artificially-grown motor neurons can serve as an intermediate between stimulator and muscle, converting the electrical stimulus into a biological action potential and re-innervating muscle via neuromuscular interaction. Here, a suitable stem cell candidate with therapeutic potential was identified and a differentiation protocol developed to generate motor neuron-like cells. Thick-film technology and laser micromachining were implemented to manufacture electrode arrays with features and dimensions suitable for implantation. Manufactured electrodes were electrochemically characterised, and motor neuron-like cells incorporated to create biohybrid devices. In vitro results indicate manufactured electrodes support motor neuron-like cell growth and neurite extension. Moreover, electrochemical characterisation suggests electrodes are suitable for stimulation. Preliminary in vivo testing explored implantation in a rat muscle denervation model. Overall, this thesis demonstrates initial development of a novel approach for fabricating biohybrid devices that may improve stimulation of denervated muscles.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Design and development of an implantable biohybrid device for muscle stimulation following lower motor neuron injury
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
URI: https://discovery.ucl.ac.uk/id/eprint/10093197
Downloads since deposit
59Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item