Levy, R;
Levet, C;
Cohen, K;
Freeman, M;
Mott, R;
Iraqi, F;
Gabet, Y;
(2020)
A genome-wide association study in mice reveals a role for Rhbdf2 in skeletal homeostasis.
Scientific Reports
, 10
, Article 3286. 10.1038/s41598-020-60146-8.
Preview |
Text
s41598-020-60146-8.pdf - Published Version Download (2MB) | Preview |
Abstract
Low bone mass and an increased risk of fracture are predictors of osteoporosis. Individuals who share the same bone-mineral density (BMD) vary in their fracture risk, suggesting that microstructural architecture is an important determinant of skeletal strength. Here, we utilized the rich diversity of the Collaborative Cross mice to identify putative causal genes that contribute to the risk of fractures. Using microcomputed tomography, we examined key structural features that pertain to bone quality in the femoral cortical and trabecular compartments of male and female mice. We estimated the broad-sense heritability to be 50–60% for all examined traits, and we identified five quantitative trait loci (QTL) significantly associated with six traits. We refined each QTL by combining information inferred from the ancestry of the mice, ranging from RNA-Seq data and published literature to shortlist candidate genes. We found strong evidence for new candidate genes, particularly Rhbdf2, whose close association with the trabecular bone volume fraction and number was strongly suggested by our analyses. We confirmed our findings with mRNA expression assays of Rhbdf2 in extreme-phenotype mice, and by phenotyping bones of Rhbdf2 knockout mice. Our results indicate that Rhbdf2 plays a decisive role in bone mass accrual and microarchitecture.
Type: | Article |
---|---|
Title: | A genome-wide association study in mice reveals a role for Rhbdf2 in skeletal homeostasis |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41598-020-60146-8 |
Publisher version: | https://doi.org/10.1038/s41598-020-60146-8 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment |
URI: | https://discovery.ucl.ac.uk/id/eprint/10093115 |
Archive Staff Only
View Item |