Gasthaus, Jan Alexander;
(2020)
Hierarchical Bayesian Nonparametric Models for Power-Law Sequences.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Gasthaus__thesis.pdf Download (5MB) | Preview |
Abstract
Sequence data that exhibits power-law behavior in its marginal and conditional distributions arises frequently from natural processes, with natural language text being a prominent example. We study probabilistic models for such sequences based on a hierarchical non-parametric Bayesian prior, develop inference and learning procedures for making these models useful in practice and applicable to large, real-world data sets, and empirically demonstrate their excellent predictive performance. In particular, we consider models based on the infinite-depth variant of the hierarchical Pitman-Yor process (HPYP) language model [Teh, 2006b] known as the Sequence Memoizer, as well as Sequence Memoizer-based cache language models and hybrid models combining the HPYP with neural language models. We empirically demonstrate that these models performwell on languagemodelling and data compression tasks.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Hierarchical Bayesian Nonparametric Models for Power-Law Sequences |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10092811 |
Archive Staff Only
View Item |