Hack, J;
García-Salaberri, PA;
Kok, MDR;
Jervis, R;
Shearing, PR;
Brandon, N;
Brett, DJL;
(2020)
X-ray Micro-Computed Tomography of Polymer Electrolyte Fuel Cells: What is the Representative Elementary Area?
Journal of The Electrochemical Society
, 167
(1)
, Article 013545. 10.1149/1945-7111/ab6983.
Preview |
Text
Hack_2020_J._Electrochem._Soc._167_013545.pdf - Published Version Download (1MB) | Preview |
Abstract
With the growing use of X-ray computed tomography (X-ray CT) datasets for modelling of transport properties, comes the need to define the representative elementary volume (REV) if considering three dimensions or the representative elementary area (REA) if considering two dimensions. The resolution used for imaging must be suited to the features of interest in the sample and the region-of-interest must be sufficiently large to capture key information. Polymer electrolyte fuel cells have a hierarchical structure, with materials spanning multiple length scales. The work presented here examines the nature of the REA throughout a 25 cm2 membrane electrode assembly (MEA), focusing specifically on the micron length scale. Studies were carried out to investigate key structural (volume fraction, layer and penetration thickness, pore diameters) and transport (effective diffusivity) properties. Furthermore, the limiting current density of the nine regions was modelled. Stochastic heterogeneity throughout the sample results in local variations throughout. Finally, effects of resolution were probed by imaging using a range of optical magnifications (4× and 20×). The correlated and competing effects of voxel resolution and sampling size were found to cause difficulties where loss of clarity in the boundaries between phases occurs with larger imaging volumes.
Type: | Article |
---|---|
Title: | X-ray Micro-Computed Tomography of Polymer Electrolyte Fuel Cells: What is the Representative Elementary Area? |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1149/1945-7111/ab6983 |
Publisher version: | http://doi.org/10.1149/1945-7111/ab6983 |
Language: | English |
Additional information: | Copyright © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/ 1945-7111/ab6983] |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/10091021 |




Archive Staff Only
![]() |
View Item |