Blumberg, SB;
Palombo, M;
Khoo, CS;
Tax, CMW;
Tanno, R;
Alexander, DC;
(2019)
Multi-stage prediction networks for data harmonization.
In: Shen, D and Liu, T and Peters, TM and Staib, LH and Essert, C and Zhou, S and Yap, P-T and Khan, A, (eds.)
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019.
(pp. pp. 411-419).
Springer: Shenzhen, China.
Preview |
Text
MSP_MICCAI.pdf - Accepted Version Download (2MB) | Preview |
Abstract
In this paper, we introduce multi-task learning (MTL) to data harmonization (DH); where we aim to harmonize images across different acquisition platforms and sites. This allows us to integrate information from multiple acquisitions and improve the predictive performance and learning efficiency of the harmonization model. Specifically, we introduce the Multi Stage Prediction (MSP) Network, a MTL framework that incorporates neural networks of potentially disparate architectures, trained for different individual acquisition platforms, into a larger architecture that is refined in unison. The MSP utilizes high-level features of single networks for individual tasks, as inputs of additional neural networks to inform the final prediction, therefore exploiting redundancy across tasks to make the most of limited training data. We validate our methods on a dMRI harmonization challenge dataset, where we predict three modern platform types, from one obtained from an old scanner. We show how MTL architectures, such as the MSP, produce around 20% improvement of patch-based mean-squared error over current state-of-the-art methods and that our MSP outperforms off-the-shelf MTL networks. Our code is available
Type: | Proceedings paper |
---|---|
Title: | Multi-stage prediction networks for data harmonization |
Event: | Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 |
ISBN-13: | 9783030322502 |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/978-3-030-32251-9_45 |
Publisher version: | https://doi.org/10.1007/978-3-030-32251-9_45 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Data Harmonization, Deep Learning, Diffusion Magnetic Resonance Imaging, Multi-Task Learning, Transfer Learning. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10090381 |
Archive Staff Only
View Item |